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Abstract This paper discuss the problem of forecasting the maximum ozone con-
centrations in urban microlocations, where reliable alerting of the local popula-
tion when thresholds have been surpassed is necessary. To improve the forecasts
the methodology of integrated models is proposed. The model is based on multi-
layer perceptron neural networks that use as inputs all available information from
QualeAria air-quality model, WRF numerical weather prediction model and on-
site measurements of meteorology and air pollution. While air-quality and meteo-
rological models cover large geographical 3-dimensional space, their local resolution
is often not satisfactory. On the other hand, empirical methods have the advan-
tage of good local forecasts. In this paper, integrated models are used for improved
one-day-ahead forecasting of the maximum hourly value of ozone within each day
for representative locations in Slovenia. The WRF meteorological model is used
for forecasting meteorological variables and the QualeAria air-quality model for
gas concentrations. Their predictions, together with measurements from ground
stations, are used as inputs to a neural network. The model validation results show
that integrated models noticeably improve ozone forecasts and provide better alert
systems.
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MEIS d.o.o
Mali Vrh pri Šmarju 78,
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1 Introduction

Tropospheric ozone is one of the main air pollutants that causes health problems.
Consequently, it constitutes an important element of real-time air-quality fore-
casting. The forecasting of tropospheric ozone is necessary and obligatory due to
EU directives that regulate standards of air quality that guarantee the protection
of human health as well as the thresholds of ozone for informing and alerting the
public when they are violated.

Ozone increases during periods of high temperatures and sunny skies. Beside
meteorological variables, various gases in the troposphere also have a documented
influence on the formation of ozone. The ozone content changes in the troposphere
and the complexity of the processes determining these changes are the reasons
why the modelling of the dynamics of atmospheric ozone is the subject of intense
research activity.

Air-quality and meteorological models are necessary for accurate forecasts of
ozone concentration, which are necessary for informing and alerting the public
about exceeded thresholds. These models can be developed using a variety of
methods that contain the scientific understanding of the physical processes in-
volved in air quality and meteorology. The alternative to these deterministic mod-
els are empirical models, usually obtained with statistical methods, that describe
the non-linear dynamics of air-quality components, formed from available measure-
ment data only. Therefore, there exists a number of methods for the prediction of
ozone concentration, based on various modelling techniques.

Deterministic models for air quality and, in particular, ozone forecasting (Im
et al, 2015) provide prognostic time- and spatially-resolved concentrations for var-
ious scenarios (including atypical ones) and, above all, provide insights into pol-
lutant formation processes (Zhang et al, 2012). Due to their complete spatial
coverage, these models also provide forecasts in locations which are not monitored
(Žabkar et al, 2015). While air-quality and meteorological models cover large geo-
graphical 3-dimensional space, their local resolution is often not satisfactory. This
is a disadvantage in the case of topographically complex terrain.

On the other hand, empirical models have the advantage of good local fore-
casts and they are generally more suitable for modelling the concentrations of air
pollutants in complex sites. When these models are developed correctly and well,
they provide forecasts of higher accuracy and with better computational efficiency
than deterministic models (Zhang et al, 2012). Nevertheless, the physical processes
involved in air quality and meteorology cannot be seen transparently in empirical
models. Various empirical models are used for air-quality forecasting, ranging from
Principal Component Regression to Takagi–Sugeno fuzzy models, e.g., (Al-Alawi
et al, 2008; Mlakar and Božnar, 2011; Moustris et al, 2012; Petelin et al, 2013;
Solaiman et al, 2008). Empirical models can be, as is the case with deterministic
models, developed based on various principles each of which has its own properties,
something which is stressed in the comparison of Lu and Wang (2014).

The present paper deals with improving the ozone forecasting in micro-locations
for the purpose of giving alerts, in Slovenia, which has a complex and geograph-
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ically diverse terrain (Žabkar et al, 2015). The present paper is part of extensive
efforts to develop air-quality forecasting system for Slovenia. The main contribu-
tion of the present paper is the integration of deterministic and empirical models
for forecasting ozone with the aim of uniting ‘the best of both worlds’ in modelling,
to overcome the problem of the low resolution of deterministic models while re-
taining their advantages.

The idea of integrating deterministic and empirical models is not a novel one. It
is quite common in fields like process engineering, e.g., (Abonyi et al, 2002; Duarte
et al, 2004; von Stosch et al, 2014), where it is called hybrid modelling. However,
it has rarely been employed in atmospheric science. Applications in (Goyal and
Kumar, 2012; Pelliccioni and Tirabassi, 2001, 2006, 2008) are examples of inte-
grating deterministic and empirical models for the elimination of system errors
in diagnostic investigation of the air quality in flat terrain case studies and for
so-called tracer experiments using nonreactive gasses.

The novelty of our study is that an integrated model is used for the one-day-
ahead forecast of ozone, as the reactive gas, for improving the deterministic models’
insufficient resolution in a real-life situation with a complex terrain, by integrating
all available information as input variables. The study is made on three years of
data for four cities.

The present paper is structured as follows. The problem is described in the next
section. The proposed methodology is introduced in Section 3. Section 4 describes
and discusses the results of the experiments to show the feasibility of the proposed
methodology. The conclusions are drawn at the end.

2 Problem description

The problem considered in this paper is to improve ozone forecasting and con-
sequently to increase the reliability of alerts for cities in the orographically and
meteorologically diverse area of Slovenia. The solution shall circumvent a real-life
problem that is caused by the low resolution of the meteorological and air-quality
models, something which becomes problematic at microlocations in complex ter-
rain. The selected locations for which the reliability of alerts is to be increased are
shown in Figure 1 and listed in Table 1. All locations are urban locations, where
exceeding the threshold limits affect quite large part of population, and these are
the kind of locations where alerts based on EU directives are necessary.

The on-line forecasting model is aimed at predictions of the daily maximum
ozone concentrations one-day ahead of the target day. The daily maximum value
is, in our case, defined as the maximum value of the hourly average ozone concen-
trations obtained between 1 and 24 hours on a particular day. The predictions of
the model for the target day are made at 07:30 UTC of that day.

3 Methodology

Our goal is to develop an integrated ozone-forecasting model, composed of deter-
ministic and empirical models. Such a model allows us to use the advantages of
both and produce more accurate forecasts. Two deterministic models are used in
our study: one for air-quality predictions and another to predict the meteorological
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Table 1 Air quality monitoring sites describing type of area/influence (EU-Commission, 2011)
and topographical features expressed with hlTc index, that explains the height and length of
topographic complexity (Božnar et al, 2012).

Monitoring Abbreviation Type of Type of Altitude hlTc
Site area influence [m] [m]

Nova Gorica NG Urban Traffic 113 500,3000
Koper KP Urban Background 72 180,3000

Ljubljana LJ Urban Background 299 200,2500
Celje CE Urban Background 240 100,2000

Nova Gorica

Celje

Ljubljana

Koper

Fig. 1 Geographical locations of the selected locations showing the topographical diversity
(Wikimedia, 2016).

variables. Besides those, we use a database with various historical meteorological
and air-quality values measured in specific locations for the training of empirical
models.

Four sets of ozone-concentration predictions will be developed for each of the
selected locations:

1. Predictions based on deterministic air-quality and meteorological models, to-
gether denoted by Model 1.

2. Predictions based on an empirical model, viz., a neural network model that
has been developed based on air-quality and meteorological measurements for
the target day. This model is highly accurate for the microlocation from where
the measurements have been sampled. However, it is unrealistic, because in
reality, the meteorological regressors for the time of prediction can be based
on meteorological forecasts only. Nevertheless, the predictions of such a model
are in our case used for comparison with the other model’s accuracy, and the
model will be referred to as the idealistic neural-network model and denoted
by Model 2.

3. Predictions based on an empirical model, viz., a neural-network model that
has been developed based on meteorological forecasts and the history of air-
quality and meteorological measurements—this is the realistic scenario. Air-
quality predictions are not taken as an input in this case. This model will be
referred to as the realistic neural-network model, and denoted by Model 3.



Improving of local ozone forecasting by integrated models 5

4. Predictions based on an integrated model for each of the selected microloca-
tions, which will integrate all available information, i.e., the history of air-
quality and meteorological measurements from that specific location, and air-
quality and meteorological forecasts from the deterministic models available
for that region. The aim of the integrated model, denoted by Model 4, is to
attain the prediction quality of the idealistic neural-network model and at the
same time retain the transparency of the deterministic model.

Two deterministic models are used in our study: one to predict air quality (QualeAria)
and the other for meteorological forecasts (WRF model). Note, that any other
available models to predict air quality and meteorological parameters can be used.

3.1 The air-quality model—QualeAria

Air quality predictions for selected locations are obtained with the QualeAria fore-
casting system. QualeAria implements three-dimensional state-of-the-art models
to describe the emission, dispersion, and transformation of pollutants in the at-
mosphere. It is based on the Flexible Air quality Regional Model—FARM, a 3D
Eulerian model simulating the dispersion and chemical reactions of atmospheric
pollutants (Kukkonen et al, 2012). The model is operationally run by the ARI-
ANET company and is coupled with the meteorological model called the Regional
Atmospheric Model System—RAMS, (Srl. and ENEA, 2016). It is part of the
MINNI Italian national modelling system (Zanini et al, December, 2005) and is
based on the same meteorological and air-quality models.

The QualeAria system is currently configured on two nested computational
grids (see Figure 2), the wider one covering Europe at a horizontal resolution of
48 km, and the smaller one covering Italy and its near neighbourhood at 12 km
resolution. Slovenia is placed in the inner part of the second modelling domain,
far enough from the domain’s border so that the results for Slovene territory are
not heavily affected by the boundary conditions. QualeAria produces air pollution
forecasts for Slovenia for up to two days in advance at 1 h time resolution and also
at 12 km spatial resolution. The first day predictions are utilised for the modelling.
The predictions of the main pollutants from this configuration are validated in
(Božnar et al, 2014) and are available on-line on a daily basis on the KOoreg
website (MEIS d.o.o., 2016).

3.2 The meteorological model—WRF

Meteorological predictions for selected locations are obtained with the Weather
Research & Forecast—WRF model (Skamarock et al, 2008). The WRF model is a
numerical weather prediction system that is used for operational forecasting and
for atmospheric research. The WRF model was developed cooperatively by the
US institutions National Centers for Environmental Prediction (NCEP), National
Center for Atmospheric Research (NCAR), and the meteorological research com-
munity. There are two dynamics solvers in the WRF software framework: the Ad-
vanced Research WRF (ARW) and the Nonhydrostatic Mesoscale Model (NNM)
solver. For this study, the ARW solver, primarily developed and maintained by
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Fig. 2 Larger and smaller geographical domains used in WRF (areas with circles in corners)
and QualeAria (areas with crosses in corners) model (Google, 2016).

NCAR, is used. The configuration of the ARW model, which runs permanently on
daily basis at the MEIS company, is as follows:

– two geographical domains,
– a larger domain (central Europe): 101 by 101 cells in a resolution of 12 km per

3 hours (see Figure 2),
– a smaller domain (Slovenia with surroundings): 76 by 76 cells in a resolution

of 4 km per 30 min (see Figure 2),
– the horizon of prediction: two days and three hours,
– The simulation of the model is finished approximately at 5:30 UTC using the

data from Global Forecasting Model (GFS) at 00:00 UTC. Our simulation runs
for one hour and a half, and it is repeated and finished again at 17:30 UTC.
Each run’s predictions overwrite the previous prediction in the overlapping time
horizon in the database. This way the weather forecast is enhanced because we
are using as regressors the present day forecasts.

The model with a given configuration running over the terrain of Slovenia is
validated in (Božnar et al, 2012). Vertical grid consists of 44 points distributed
in the vertical domain of pressure from 1013 hPa (surface) to 50 hPa (top) and
following topography by ETA coordinate. Used physical features (Skamarock et al,
2008):
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– Cumulus parameterization proposed by Kain-Fritsch scheme (Kain, 2004) in
the 1st domain and none in 2nd,

– Microphysics scheme proposed by Lin et al (1983),
– Planetary Boundary Layer by Yonsei University scheme (Hong et al, 2006),
– for long wave radiation it uses the Rapid Radiative Transfer Model (Mlawer

et al, 1997) and
– for short wave radiation it uses the Dudhia scheme (Dudhia, 1989).

The initial and boundary conditions were provided by Global Forecasting
Model (GFS).

3.3 The neural network model

Statistical models are widely used for representing and predicting the dynamic
state of environmental systems. They outperform the deterministic ones where
localised on-line prediction is needed. Neural network (NN) models have been
widely used for gas concentration forecasting since the early 1990s, e.g., (Božnar
et al, 1993; Dutot et al, 2007; Ibarra-Berastegi et al, 2008).

Multilayer feed-forward NN models can be understood as a nonlinear mapping
from inputs to outputs (Ibarra-Berastegi et al, 2008). The mapping function is
established during a training phase, where after making a previous choice of the
network architecture, the NN learns to correctly associate inputs and outputs.
Defining a certain type of architecture involves choosing the number of layers,
the number of nodes per layer, and the number of connections. Once the network
architecture is defined, the final values of the weights corresponding to the mapping
function will be obtained after a fitting process which generally starts with random
values of the optimisation parameters to estimate.

The NN model used in this study is the nonlinear autoregressive model with
exogenous inputs (NARX). In particular, it is the MultiLayer Perceptron (MLP)
network (Božnar et al, 1993). The weights of the MLP are adjustable optimisation
parameters, the model inputs are exogenous variables, and the model output is
the variable to be predicted. MLP can feature any smooth functional relationship
between one or more inputs and variables to be predicted. This can be achieved
with one hidden layer of neurons, as it is in our case.

This regression problem can be presented as a static single-output process
with an n-input matrix X and an output vector y. So, the estimated model can
be represented by:

ŷ = f(X,w) + ε, (1)

where f is the nonlinear mapping realised with basis functions that are represented
with activation functions and w are weights, i.e., the optimisation parameters of
the neural regression to be estimated. ε is a zero-mean random variable. In this
study we train the NN model with 20 neurons, tangent sigmoid activation functions
in the hidden layer, and a linear activation function in the output layer. The
weights are trained by gradient descent with a momentum optimisation algorithm
(Learning rate = 0.1, Momentum = 0.1) (Božnar et al, 2012). All the NN models
in our study share the same structure.
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3.4 Validation methodology

The proposed integrated model (Model 4) will be compared to (i) the existing
QualeAria system (Model 1), (ii) the idealistic NN model trained with inputs
based on measurements only (Model 2) and (iii) the realistic NN model trained
with measurements from previous days and forecasts for the target day for input
meteorological variables from the WRF model (Model 3).

To make it more reliable, the methodology is validated in four different lo-
cations in Slovenia with different properties. Nova Gorica has a Mediterranean
climate, with its air quality strongly influenced by the river Po and the industrial
Friuli region in Italy. Koper is an industrial and port town on the Adriatic coast
with a Mediterranean climate and is influenced by the same factors as Nova Gor-
ica. Ljubljana is the biggest city in Slovenia and has an unfavourable geographical
location in a wider basin with a continental climate, where industrial air pollu-
tion is combined with the air pollution from traffic and domestic heating. Similar
characteristics apply to the Celje region.

All the empirical models, including the integrated models, have been trained
on measurements from a period of one year and tested on measurements from the
period of the two subsequent years. This was done for the purpose of demonstrating
the performance of the forecasting models for a longer period.

4 Results and discussion

4.1 Measurements

The meteorological and air-quality variables at the selected locations were mea-
sured and then elaborated on an hourly basis. The measured data in this study
were acquired for all the available variables, as listed in Table 2, for each location,
for a period of three years (from the beginning of 2012 to the end of 2014).

Table 2 Available variables’ measurements: ozone concentration (O3), solid particles (PM10),
nitrogen oxides concentration (NOx), nitrogen dioxide concentration (NO2), carbon monox-
ide (CO), air temperature (AirTemp), relative humidity (RelHum), global solar radiation
(GlSolRad), wind speed (WindSpd), wind direction (WindDir), air pressure (Pressure) and
precipitation (Precip).

Nova Gorica Koper Ljubljana Celje

O3 O3 O3 O3
GlSolRad GlSolRad GlSolRad GlSolRad
AirTemp AirTemp AirTemp AirTemp
RelHum RelHum RelHum RelHum
WindSpd WindSpd WindSpd /
WindDir WindDir WindDir /

NOx NOx NOx NOx
NO2 NO2 NO2 NO2
/ / SO2 SO2

PM10 PM10 PM10 PM10
Precip Precip Precip Precip

Pressure Pressure / /
/ / CO /
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Besides the measurements, one-day ahead predictions of meteorological vari-
ables obtained from the WRF modelling system, and air-quality variables forecast
by the QualeAria system for the same period of time are available.

4.2 Regressor selection

To gain a credible ozone forecast, the model needs input data of all influential
variables. However, with the number of available variables and their lagged values,
the size of the regression vector or input features and, consequently, of the model,
increases noticeably. For this reason it is necessary to select only the regressors
that add the most information to the prediction. Various methods for the selection
of the regressors or features are available.

In this paper, we use the methodology of input variable selection presented in
Kocijan et al (2016). This methodology combines various regressor-selection algo-
rithms, where the rankings achieved are first averaged for every location and these
are later grouped to obtain the final sequence of regressors, ordered in terms of
their importance. In the second stage, we determine how many of regressors should
be used in order to produce the best prediction, using 10-fold cross-validation. The
first 9 regressors from the final selection give the best results on average on all
locations and measures, and are given in Table 3. Note that the integrated model
uses one additional regressor: the value of ozone from the QualeAria system for the
target day (O3(k + 1)). As prediction for NOx needed in integrated model is not
available from QualeAria model, NO2 is used instead which is a reasonable sub-
stitute for NOx. In the case that there are no measurements for some regressors,
the training and prediction are performed without that time interval. All listed
regressors have been used for the empirical as well as for the integrated models,
but forecasts are used instead of measurements when necessary according to the
type of model. Note that the NOx regressor is not used in the realistic NN model
because the measurement for the target day is not available.

Table 3 The selected regressors for the empirical models. k + i, i = 0, 1 denotes consecutive
time instants.

Daily maximum of hourly values
1 O3(k)
2 GlSolRad(k + 1)
3 AirTemp(k + 1)
4 AirTemp(k)
5 GlSolRad(k)
6 RelHum(k + 1)
7 NOx(k + 1)
8 Pressure(k + 1)
9 Pressure(k)

This procedure makes it possible to obtain an averaged set of regressors that
encompasses the significant regressors for all the involved locations. The rationale
behind the described selection procedure is to obtain a single uniform regression
vector for a larger area, in our case the urban parts of Slovenia, and to avoid
having to select the regressors every time we include a new location.



10 Dejan Gradǐsar et al.

4.3 Prediction quality

In this section we compare all four different models used for one-day-ahead pre-
dictions of 1h O3 daily maxima in four different locations. The predictions are
validated with the following performance measures, which are described in the
Appendix: the root mean square error (RMSE), the standardised mean-squared
error (SMSE), Pearson’s correlation coefficient (PCC), the mean fractional bias
(MFB), and the factor of the modelled values within a factor of two of the obser-
vations (FAC2).

Firstly, we analyse the prediction quality of the QualeAria system. As described
in subsection 3.1, its spatial resolution is 12 km. Therefore, we can expect that its
predictions are not equally accurate in every location. The problems are related to
imperfect emission inventory. For instance, bad inventory for traffic influences the
traffic and urban type of stations. Also the spatial resolution of the inventory and
again system itself are not sufficient for the complexity of the terrain (see index
hlTc in Table 1). The resulting performance measures for all tested locations are
listed in Table 4.

Table 4 Performance measures in relative units (Appendix) for different locations for predic-
tions of daily maximum O3 concentrations: QualeAria predictions (Model 1).

Performance measure RMSE [µg/m3] SMSE PCC MFB FAC2

NG 25.848 0.46 0.857 0.116 0.946
KP 25.561 0.643 0.859 0.234 0.972
LJ 21.466 0.369 0.834 0.029 0.924
CE 22.711 0.451 0.803 0.064 0.93

Next we introduce the idealistic NN model. The regressors from Table 3 are
used for training and prediction of the ozone concentration level. In this case
we assume the ideal case, where also the regressors corresponding to the time
of prediction (the target day) are taken from the database of measurements as
surrogates for a perfect forecast. The rationale is to obtain the best attainable
model and predictions that can be used as the reference for other models and
their predictions. The evaluation of the model predictions is presented in Table 5.
It can be seen from the table that the predictions of the idealistic NN model are

Table 5 Performance measures for different locations for predictions of daily maximum O3

concentrations: idealistic NN model using measured data only (Model 2).

Performance measure RMSE [µg/m3] SMSE PCC MFB FAC2

NG 16.104 0.18 0.911 -0.077 0.96
KP 13.395 0.18 0.909 -0.004 0.988
LJ 13.999 0.16 0.921 -0.057 0.93
CE 15.608 0.21 0.894 -0.025 0.94

much better than those from Table 4. Nevertheless, the idealistic model cannot
provide insights into the pollutant formation processes.
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In the next type of model, we include the publicly available meteorological
forecasts instead of the measurements for the time of prediction. This constitutes
a more realistic case study and is a common modelling practice described in the
literature. Air quality predictions are not taken as inputs (Model 3).

The evaluations of the NN model’s predictions using historical measured data
and meteorological predictions from the WRF model are given in Table 6. The

Table 6 Performance measures for different locations for predictions of daily maximum O3

concentrations: NN using measured data and WRF meteorological predictions (Model 3).

Performance measure RMSE [µg/m3] SMSE PCC MFB FAC2

NG 17.601 0.213 0.892 -0.065 0.937
KP 14.513 0.207 0.891 -0.03 0.987
LJ 16.288 0.212 0.89 -0.053 0.919
CE 17.134 0.257 0.87 -0.054 0.93

prediction results are, as expected, worse than those of the idealistic NN model,
because of the uncertainties of meteorological forecasts. However, the predictions
are better than those of the deterministic model, because of their local enhance-
ment.

Finally, we present the evaluation results for the integrated model (Model 4).
The idea of the integrated model is to enhance the predictions from the determin-
istic model with the empirical model. This can be seen as the serial connection of
the deterministic model and the empirical model. This way, the addition of the NN
to the deterministic model compensates for the model mismatch in microlocations
due to resolution inaccuracies.

The integrated model also uses predicted air-quality regressors, including the
ozone concentration, provided by the QualeAria forecast system. Consequently,
the regressors are combined from the historical measured data of air-quality and
meteorological variables, from predicted meteorological regressors obtained from
the WRF model, and predicted air-quality regressors for O3 and NOx from the
QualeAria model for the target day.

The evaluation of the integrated model predictions is given in Table 7 and
confirms the improvement in the quality of the predictions.

Table 7 Performance measures for different locations for predictions of daily maximum con-
centrations: integrated model predictions (Model 4).

Performance measure RMSE [µg/m3] SMSE PCC MFB FAC2

NG 15.323 0.162 0.916 -0.035 0.95
KP 13.362 0.175 0.908 -0.018 0.99
LJ 15.28 0.187 0.904 -0.056 0.927
CE 15.564 0.212 0.891 -0.055 0.939

The performance measurement statistics compared site-by-site are given in
Figure 3. The improvement of the integrated model prediction results over the
realistic NN model and deterministic model can be seen from the presented results.
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Fig. 3 Site by site comparison: QualeAria predictions (Model 1), NN using measured data
(Model 2), NN using measured data and WRF predictions (Model 3) and Integrated model
(Model 4).

The results show that in the case of complex terrain, the deterministic air-
quality models can be upgraded and their results enhanced with a properly trained
empirical model. It is clear that the predictions of the integrated model come
sufficiently close to those of the idealistic NN model, but retaining the advantages
of the deterministic model.
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It is important to note that any suitable deterministic and any properly trained
empirical nonlinear model can be used to pursue the proposed modelling and
forecasting method for complex terrain. The selection at hand was conditioned by
the availability of the data and experience in using artificial neural networks.

Next, a visual comparison of the models’ predictions, employing scatter plots
and time responses, will be given; due to space constraints, only for one of the
considered locations, namely Nova Gorica, where a high ozone level is the most
problematic. In Figure 4, time-series plots of the measured and predicted values for
one year (2014) are shown. It can be observed that the predictions by the QualeAria
forecasting system are not up to the predictions of the integrated model.

The same prediction results are shown also in scatter plots in Figure 5. The
figures compare the predicted and measured values. It can be seen that the pre-
diction quality for the location of interest improves when NN models are used that
use the information gained from measurements at microlocations. The predictions
from the idealistic NN model that uses only measured data shall be considered as
the reference (see Figure 5b).

The main purpose of the ozone-concentration forecasting is to predict when
concentration values violate the prescribed thresholds. The European Union’s Air
Quality Directive (EU-Commission, 2008)sets four standards to reduce air pollu-
tion by ozone and its impacts on health: (i) information threshold: 1-hour average
ozone concentration of 180 µg/m3, (ii) alert threshold: 1-hour average ozone con-
centration of 240 µg/m3, (iii) long-term objective: the maximum daily 8-hour mean
concentration of ozone should not exceed 120 µg/m3, (iv) target value: long-term
objective (120 µg/m3) should not be exceeded on more than 25 days per year,
averaged over three years.

We have analysed how successful our prediction models would be when used
to alert about cases of 1-hour ozone concentration. It never occurs that the alert
threshold (240 µg/m3) is violated in the observed years. In Table 8, the number
of information threshold violations (180 µg/m3) is given, together with the num-
ber of violations of additional—lowered—informative threshold (140 µg/m3). This
threshold is added in order to show the prediction capabilities of our models. In
Table 8, all violations detected in 2013–2014 are listed, i.e., actual (correctly/failed
forecasts).

The successfulness of the detection of threshold violations for the case of Nova
Gorica is illustrated also in Figure 5. The area marked with lighter colour indicates
situations when the model prediction fails to predict violations of the 140 µg/m3

threshold, and the area with darker colour indicates failures to predict violations
of the 180 µg/m3 threshold.

From the presented results it is clear that the developed integrated model,
based on local measured data together with the available predictive meteorologi-
cal and air-quality values, predicts ozone concentrations better than the currently
available QualeAria system at the selected microlocations. Nevertheless, the num-
ber of correctly forecast alarms can still be improved, which indicates that the set
of regressors is not yet perfect.
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Table 8 No. of threshold violations (Actual alarms/Correct forecasts/False alarms).

Threshold [µg/m3] QualeAria NN NN + WRF Integrated model

NG ≥ 140 52/0/0 51/36/18 52/40/18 52/39/10
≥ 180 6/0/0 6/0/0 6/1/0 6/0/0

KP ≥ 140 52/2/0 52/34/14 52/30/17 52/32/10
≥ 180 5/0/0 5/0/0 5/0/0 5/0/0

LJ ≥ 140 21/0/0 21/16/3 21/13/5 21/13/7
≥ 180 1/0/0 1/0/0 1/0/0 1/0/0

CE ≥ 140 12/0/0 12/9/6 12/8/0 12/9/3
≥ 180 0/0/0 0/0/0 0/0/0 0/0/0
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Fig. 4 Time-series plot of predictions for daily maximum ozone concentrations for Nova Gor-
ica: QualeAria predictions (Model 1), NN using measured data (Model 2), NN using measured
data and WRF predictions (Model 3) and integrated model (Model 4).
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Fig. 5 Predicted values versus observation values for daily maximum ozone concentrations
for Nova Gorica: QualeAria predictions (upper left), NN using measured data (upper right),
NN using measured data and WRF predictions (lower left), integrated model (lower right).
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5 Conclusions

An application of an integrated model for improving ozone forecasting at urban
micro-locations in the complex terrain of Slovenia is described in the paper. Real-
istic case studies of four cities, positioned in orographically and meteorologically
diverse places, are used for demonstrating air-quality forecasting models that have
been developed and validated for the longer time period of three years.

The models for these four cities are integrated combinations of the QueleAria
air-quality model, the WRF meteorological model, and empirical neural network
models. The analysis showed that the QualeAria air-quality model cannot fore-
cast ozone accurately enough for the purpose of issuing alerts for microlocations,
because its horizontal resolution is too low and it misses a fair amount of de-
tails. The ability of the empirical neural-network model to provide higher forecast
accuracy as compared to deterministic models has been used to enhance the deter-
ministic models for specific microlocations. This integration enables the combined
models to maintain the scientific insights into pollutant formation processes and
prognostic abilities for atypical scenarios, but have an improved forecasting ability
for these microlocations. Further, the integrated model for forecasting is not much
more demanding, computationally, than the air-quality and meteorological models
themselves.

Even though this integration has been built from three particular types of
models, this methodology can in general be used with any kind of air-quality,
meteorological, and nonlinear empirical models, provided that these models are
developed, validated and implemented correctly.

The analysis shows that the integrated model under realistic conditions pro-
vides superior forecasting results than deterministic models and realistic empirical
model separately. An effective methodology for the development of a model with
an increased reliability of ozone forecasting that can be used for alerting the in-
habitants according to regulations has been demonstrated.

Work on improved alerts based on on-line air-quality model will be continued
for other pollutants and other combinations of air-quality forecasting models.
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A Performance measures

The following are performance measures used in the study.

– The root-mean-square error – RMSE:

RMSE =

√√√√ 1

N

N∑
i=1

(E(ŷi)− yi)2, (2)

where yi and ŷi are the observation and the prediction in the i-th step, respectively, E(·)
denotes the expectation, i.e., the mean value, of the random variable, and N is the number
of used observations.

– The standardised mean-squared error – SMSE

SMSE =
1

N

∑N
i=1(E(ŷi)− yi)

2

σ2
y

, (3)

where σ2
y is the variance of the observations.

– The Pearson’s correlation coefficient – PCC:

PCC =

∑N
i=1(E(ŷi)− E(ŷ))(yi − E(y))

Nσyσŷ
, (4)

where E(ŷ) is the expectation, i.e., the mean value, of the vector of predictions, and σy,σŷ

are the standard deviations of the observations and the predictions, respectively.
– The mean fractional bias – MFB:

MFB =
1

N

N∑
i=1

E(ŷi)− yi
1
2
(E(ŷi) + yi)

. (5)

– The factor of the modelled values within a factor of two of the observations – FAC2:

FAC2 =
1

N

N∑
i=1

ni with ni =

{
1 for 0.5 ≤ |E(ŷi)

yi
| ≤ 2,

0 else.
(6)

RMSE and SMSE are frequently used measures for the accuracy of the predictions’ mean
values, which are 0 in the case of perfect model. SMSE is the standardised measure with values
between 0 and 1. PCC is a measure of associativity and is not sensitive to bias. Its value is
between -1 and +1, with ideally linearly correlated values resulting in a value 1. MFB is the
measure that bounds the maximum bias and gives additional weight to underestimations and
less weight to overestimations. Its value is between -2 and +2, with the value 0 in the case
of a perfect model. FAC2 indicates the fraction of the data that satisfies the condition from
Equation (6). Its value is between 0 and 1, with the perfect model resulting in a value of 1.


