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I . I ntroduction

G a u s s ia n p roc e s s ( G P ) m od e ls form a n e w , e m e rg in g c om p le m e n ta r y m e th od for n on lin e a r s y s te m

id e n tifi c a tion . G P m od e l is a p rob a b ilis tic n on p a r a m e tr ic b la c k - b ox m od e l. I t d iff e r s f rom m os t of th e

oth e r f r e q u e n tly u s e d b la c k - b ox id e n tifi c a tion a p p roa c h e s ( s u c h a s N e u r a l N e tw ork s [ 1 ] ) a s it d oe s n ot

tr y to a p p rox im a te th e m od e lle d s y s te m b y fi ttin g th e p a r a m e te r s of th e s e le c te d b a s is f u n c tion s b u t

r a th e r s e a r c h e s for th e r e la tion s h ip a m on g m e a s u r e d d a ta . B e c a u s e G P m od e l is a B a y e s ia n m od e l, th e

ou tp u t of G a u s s ia n p roc e s s m od e l is a n orm a l d is tr ib u tion , e x p r e s s e d in te r m s of m e a n a n d v a r ia n c e .

M e a n v a lu e r e p r e s e n ts th e m os t lik e ly ou tp u t a n d th e v a r ia n c e c a n b e v ie w e d a s th e m e a s u r e of its

c on fi d e n c e . O b ta in e d v a r ia n c e , w h ic h d e p e n d s on a m ou n t of a v a ila b le id e n tifi c a tion d a ta , is im p orta n t

in form a tion d is tin g u is h in g th e G P m od e ls f rom oth e r n on - B a y e s ia n m e th od s . G a u s s ia n p roc e s s c a n b e

u s e d for m od e l id e n tifi c a tion w h e n d a ta a r e h e a v ily c orr u p te d w ith n ois e , w h e n th e r e a r e ou tlie r s or

g a p s in th e in p u t d a ta . A n oth e r u s e f u l a ttr ib u te of G P m od e l is th e p os s ib ility to in c lu d e v a r iou s k in d s

of p r ior k n ow le d g e in to th e m od e l, e .g . loc a l m od e ls , s ta tic c h a r a c te r is tic , e tc .

A n otic e a b le d r a w b a c k of th e s y s te m id e n tifi c a tion w ith G a u s s ia n p roc e s s m od e ls is c om p u ta tion

tim e n e c e s s a r y for m od e llin g . G a u s s ia n p roc e s s r e g r e s s ion in v olv e s s e v e r a l m a tr ix c om p u ta tion s w h ic h

loa d in c r e a s e s w ith th e th ir d p ow e r of th e n u m b e r of in p u t d a ta , s u c h a s m a tr ix in v e r s ion a n d th e

c a lc u la tion of th e log - d e te r m in a n t of u s e d c ov a r ia n c e m a tr ix . T h is c om p u ta tion a l g r e e d r e s tr ic t th e

n u m b e r of tr a in in g d a ta , to a t m os t a f e w th ou s a n d c a s e s .

T o ov e r c om e th e c om p u ta tion a l lim ita tion is s u e s a n d m a k e u s e of th e m e th od a ls o for la rg e - s c a le

d a ta s e t a p p lic a tion , n u m e rou s a u th ors h a v e s u g g e s te d v a r iou s s p a r s e a p p rox im a tion s . A u th ors of [ 2 ]

h a v e p rov id e d a u n ifi e d v ie w of s p a r s e G a u s s ia n p roc e s s a p p rox im a tion , w h ic h in c lu d e s a c om p a r is on

of w ork p u b lis h e d b y v a r iou s a u th ors . C om m on to a ll th e s e a p p rox im a tion m e th od s is th a t on ly a

s u b s e t of th e v a r ia b le s is tr e a te d e x a c tly , w ith th e r e m a in in g v a r ia b le s g iv e n s om e a p p rox im a te , b u t

c om p u ta tion a lly c h e a p e r a p p roa c h . O n - lin e le a r n in g of G a u s s ia n p roc e s s m od e ls c a n b e tr e a te d a s th e

s p e c ia l c a s e of s p a r s e G a u s s ia n p roc e s s a p p rox im a tion . S u c h m e th od , th a t is in th e foc u s of th is p a p e r,

is s p a r s e on - lin e G a u s s ia n p roc e s s e s le a r n in g m e th od [ 3 ] .

T h e p u r p os e of th is p a p e r is to m a k e a c a s e s tu d y of u s in g a n on - lin e s p a r s e G a u s s ia n p roc e s s e s

le a r n in g m e th od for m od e llin g a p r e s s u r e s ig n a l of g a s - liq u id s e p a r a tion p roc e s s . O b ta in e d m od e l

w ou ld b e u s e d for th e on e - s te p - a h e a d p r e d ic tion for th e d e v e lop m e n t or op e r a tion of th e s y s te m .

T h e p a p e r is c om p os e d a s follow s . T h e n e x t s e c tion w ill b r ie fl y d e s c r ib e th e m od e llin g of d y n a m ic

s y s te m s w ith G a u s s ia n p roc e s s m od e ls . T h e c a s e s tu d y w ill follow in th e th ir d s e c tion a n d th e c on c lu -

s ion s a r e g iv e n a t th e e n d of th e p a p e r.

I I . M odelling of dy namic sy stems w ith Gaussian processes

A G a u s s ia n p roc e s s m od e l is a fl e x ib le , p rob a b ilis tic , n on - p a r a m e tr ic m od e l w ith u n c e r ta in ty p r e -

d ic tion s . I ts u s e s a n d p rop e r tie s for m od e llin g a r e r e v ie w e d in [ 4 ] . T h e u s e of G a u s s ia n p roc e s s e s for

m od e llin g d y n a m ic s y s te m s is a r e la tiv e ly r e c e n t d e v e lop m e n t [ 5 ] . A r e tros p e c tiv e r e v ie w c a n b e fou n d
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in [6].

A Gaussian process is a collection of random variables that have a joint multivariate Gaussian distri-

bution. The mean µ(x) and the covariance function C(xp,xq) fully specify the Gaussian process. Note

that the covariance function C(., .) can be any function that has the property of generating a positive

semidefinite covariance matrix.

The covariance function C(xp,xq) can be interpreted as a measure of the distance between the input

points xp and xq. F or systems modelling it is usually composed of two main parts, representing the

functional part and the noise part.

A common choice is

Cf (xp,xq) = v1 exp

[

−
1

2

D
∑

d= 1

wd(xdp − xdq)
2

]

+ δpqv0, (1)

where ΘΘΘ = [w1 ...wD v0 v1]
T are the ‘hyperparameters’ of the covariance functions, D is the input

dimension and δpq = 1 if p = q and 0 otherwise. Other possible covariance functions are given in [4].

The square exponential covariance function represents smooth and continuous functional part and the

constant covariance function represents the noise part when it is presumed to be the white noise. F or a

given problem, the parameters are learned or identified using the data at hand.

Consider a set of N D-dimensional input vectors X = [x1,x2, ...,xN ] and a vector of output data

y = [y1, y2, ..., yN ]
T . Based on the data (X,y), and given a new input vector x∗, we wish to find

the predictive distribution of the corresponding output y∗. Unlike other models, there is no model-

parameter determination as such, within a fixed model structure. W ith this model, most of the effort

involves tuning the parameters of the covariance function. This is done by maximising the log marginal

likelihood (log(p(y|X)) = −1

2
log(| K |)− 1

2
yTK−1y− N

2
log(2π))), where K is the N ×N training

covariance matrix. The number of parameters to be optimized is small (D + 2, see equation (1)),

which means that the optimization convergence might be faster and that the ‘curse of dimensionality’

so common to black-box identification methods is circumvented or at least decreased.

The described approach can be easily utilized for regression calculations. Based on the training set

X a covariance matrix K of size N × N is determined. As already mentioned, the aim is to find

the distribution of the corresponding output y∗ at some new input vector x∗ = [x1(N + 1), x2(N +
1), ..., xD(N + 1)]T .

F or a new test input x∗, the predictive distribution of the corresponding output is y∗|(X,y),x∗ and

this is Gaussian, with a mean and a variance

µ(x∗) = k(x∗)T K−1 y, (2)

σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗), (3)

where k(x∗) = [C(x1,x∗), ..., C(xN ,x∗)]T is the N × 1 vector of covariances between the test and

training cases, and k(x∗) = C(x∗,x∗) is the covariance between the test input and itself [4].

Gaussian processes can, like other machine learning methods, e.g. neural networks, be used to model

static nonlinearities and can therefore be used for the modelling of dynamic systems [7 ] if the delayed

input and output signals are fed back and used as regressors. In such cases an autoregressive model

is considered, such that the current output depends on the previous outputs, as well as on the previous

control inputs.

x(k) = [y(k − 1), y(k − 2), ..., y(k − L),

u(k − 1), u(k − 2), ..., u(k − L)]T ,

y(k) = f(x(k)) + ε, (4)

where k denotes the consecutive number of the data sample. Let x denote the state vector composed

of the previous outputs y and inputs u up to a given lag L, and ε is white noise.
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As can be seen from the presented relations, the obtained model not only describes the dynamic

characteristics of the nonlinear system, but also provides information about the confidence in these

predictions by means of the prediction variance. The Gaussian process can highlight areas of the input

space where the prediction quality is poor, due to the lack of data, by indicating a higher variance

around the predicted mean.

1. On-line modelling

A noticeable drawback of system identification with Gaussian process models is the computation

time necessary for the modelling. Gaussian process regression involves several matrix computations in

which the load increases with the third power of the number of input data, such as matrix inversion and

the calculation of the log-determinant of the used covariance matrix. This computational greed restricts

the amount of training data, to at most a few thousand cases. To overcome the computational-limitation

issues and to also make use of the method for large-scale dataset applications, numerous authors have

suggested various sparse approximations [2, 8 ] as well as on-line modelling [3], which is a special kind

of sparse approximate method. A common property to all sparse approximate methods is that they try

to retain the bulk of the information contained in the full training dataset, but reduce the size of the

resultant covariance matrix so as to facilitate a less computationally demanding implementation of the

GP model.

The selected on-line learning method [9 , 3, 10], suited to our problem, is based on a combination

of a Bayesian on-line approach [11] and a sequential construction of a relevant sub-sample of the

data on which an approximation of the GP model is based. This approximation is obtained by using

parametrisation and projection techniques. To keep the subset of the most relevant data a fixed size

there are two types of update to the GP model: a b a s ic update that is performed when the error of a

new approximation is smaller than a defined threshold, and a full update, which is performed otherwise.

While a basic update only updates parameters that present the approximation, without increasing their

number, a full update, besides updating parameters, also adds current data to the subset of the most

relevant data. If this operation results in the maximum size of the subset being exceeded, the least

relevant data is removed.

III. Case study

The semi-industrial process plant used for the case study in this paper is the unit for separating the

gas from the liquid that forms part of a larger pilot plant.

The role of the separation unit is to capture the flue gases under low pressure from the effluent

channels by means of a water flow, to cool them down and then supply them under high-enough

pressure to other parts of the pilot plant.

The flue gases coming from the effluent channels are absorbed by the water flow into the water

circulation pipe through the injector.

The water flow is generated by the water ring pump. The speed of the pump is kept constant. The

pump feeds the mixture of water and gas into the tank, where the gas is separated from the water.

H ence, the accumulated gas in the tank forms a sort of ’gas cushion’ with an increased internal pressure.

Owing to this pressure, the flue gas is blown out from the tank into the neutralization unit. On the other

hand, the ’cushion’ forces the water to circulate back to the reservoir. The quantity of water in the

circuit is constant.

Since the process to be identified is characterised as predominantly a first-order system a model of

the form 5 is identified

p1(k + 1) = f(p1(k), u1(k), h1(k)). (5)

This means that the pressure p1(k), the valve signal u1(k) and the liquid level h1(k) are selected for

regressors. R ef. [12] contains a more elaborate study on the choice of model order and regressors for
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this process.
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Figure 1: Signals that are used for regressors of the identified model

For training were used signals, given in Figure 1, which were obtained from experiment on the plant

described before. The experiment was running 4 hours with measurement interval of 1 second. The

measured values of pressure are between 0.4 and 0.7 bar, of liquid level are between 0.4 and 1.5 meters,

of valve aperture are between 0 (close) and 1 (open).

While the computational complexity of an on-line Gaussian process model raises only linearly with

the amount of training data, all available data (14520) was used for training. As it was already men-

tioned, the on-line Gaussian process model is based on the set of basis vectors, which best describes

the process. In order to get as best as possible model, the maximum size of the set of basis vectors

was limited to approximately the tenth of all data - that is 1500 samples. However, the obtained model

finally contains 1191 basis vectors.

The distribution of basis vectors through the whole process can be seen from Figure 2, where basis

vectors are marked with red crosses. These evenly distributed basis vectors enable accurate one-step-

ahead predictions. The accuracy of one-step-ahead predictions are validated with four error measures:

• mean squared error: MSE = 1
n

∑n

i=1(y(i)− ŷ(i))2,

• mean absolute error: MA E = 1
n

∑n

i=1 |y(i)− ŷ(i)|,

• minus log-predicted density error: LP D = 1
2n

∑n

i=1

(

log(2π) + log(σ) + (y(i)−ŷ(i))2

σ

)

,

• mean relative square error: MR SE =
√∑

n

i= 1
(y(i)−ŷ(i))2

∑
n

i= 1
y(i)2

.

All these error measures for obtained model are given in Table 1. It is clear that the one-step-ahead

predictions are sufficiently accurate through the whole process. In conclusion, obtained model is useful

for any task where a short-time-prediction for the development or operation of the system is needed.
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MSE MAE LPD MRSE

0,0001461 0,0073 -0,5902 0,1201

Table 1: The table of different error measures for validating the model prediction
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Figure 2: One-step-ahead prediction with Gaussian process model (top) with corresponding confidence

band and absolute values of prediction error (bottom)

We also wanted to find out the error measures dependency of the amount of basis vectors. Therefore

we sequentially removed the worst scored basis vector from the set of basis vectors and validated the

obtained model with previously described error measures. The results are given in Figure 3.

It can be seen that error measures stabilise by different amount of basis vectors. Error measures

that not take into account the variance of prediction (MSE, MAE, MRSE) stabilise much faster (ap-

proximately by 300 basis vectors) than LPD. Latter takes into account variance and is therefore more

suitable for validating Bayesian models. It stabilises by approximately 600 basis vectors. That means

the process containing 14520 samples could be sufficiently described with 600 basis vectors.

IV. Conclusion

An on-line learning of Gaussian process models is proposed in this paper for one-step-ahead pre-

dictions of pressure signal used for any task where a short-time-prediction for the development or

operation of the system is needed. The obtained results in the case study show that the on-line learn-

ing algorithm evenly distributes the basis vectors through the whole process and therefore makes the

one-step-ahead predictions sufficiently accurate.

Future work will be directed towards an improvement of the model for multi-step-ahead predictions

and validation with simulation. The success of simulation would be good basis for predictive control

of this process in practice.
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Figure 3: Comparison of used error measures depending from the number of utilized basis vectors
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[ 9 ] L . Csató and M . O pper, “ S parse representation for gaussian process models,” A dv ances in neural information

p rocessing systems, 1 3:4 4 4 – 4 5 0 , 2 0 0 1 .
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