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Abstract

Ozone is one of the main air pollutants with harmful influence on human
health. Therefore, predicting the ozone concentration and informing the popu-
lation when the air-quality standards are not being met is an important task.
In this paper a method for prediction of the ozone concentration based on an
on-line updated dynamic model obtained from measurement data is proposed
and evaluated as a first- and third-order model. For this purpose hourly mea-
surements of the concentrations of ozone and nitrogen dioxide in the air of the
town of Burgas, Bulgaria are used.
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1. Introduction Ozone is one of the main air pollutants with a harmful
influence on human health. The European standards that guarantee human-
health protection are as follows [1]: health protection level, 120 µg/m3 eight hours
mean concentration; informing the public level, 180 µg/m3 one hour mean con-
centration; and warning the public level, 240 µg/m3 one hour mean concentration.
Therefore, predicting the ozone concentration and informing the population when
the air-quality standards are not being met are important tasks. This paper de-
scribes a method for the prediction of the ozone concentration based on an on-line
updated dynamic model obtained from measurement data.
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Ozone concentration has a pronounced daily cycle [10], which can be mod-
elled and forecasted using a variety of methods, and methods that describe the
nonlinear dynamics from available data are particularly useful. In [6] neural net-
works models and Gaussian process models for ozone-concentration forecasting
in some regions of Slovenia were developed and evaluated.

The town of Burgas is among the regions with the highest levels of ozone
pollution in the air in Bulgaria, which makes it important to obtain a prediction
model for this region. In [5] Gaussian process models based on measurements
of the air-pollutant concentrations are identified and verified for one-step-ahead

predictions of the ozone concentration in the air of Burgas. These models are
learned off-line using only a subset of the available data due to the high compu-
tational burden of modelling Gaussian process models. However, this limitation
and, consequently, the quality of Gaussian process models can be improved with
on-line updating using the most recent measurements.

The Gaussian process model is a probabilistic, non-parametric, black-box
model. It differs from most of the other black-box identification approaches in
that it does not try to approximate the modelled system by fitting the parameters
of the selected basis functions, but rather by searching for relationships among the
measured data. The output of the Gaussian process model is a normal distribution
expressed in terms of the mean and the variance. The mean value represents
the most likely output and the variance can be interpreted as a measure of its
confidence. The obtained variance, which depends on the amount and the quality
of the available identification data, is important information when it comes to
distinguishing the Gaussian process models from other methods.

The purpose of this paper is to propose a solution to the problem of ozone
prediction that is operational throughout the year and is based on on-line learning
of the model used for the prediction. The proposed solution is based on an on-

line Gaussian process model that can be utilised for few-hour-ahead predictions of
the ozone concentration. For this purpose the sparse, on-line, Gaussian processes
learning method [3] is taken and modified in such a way that it also makes on-line
predictions.

2. Modelling dynamic systems with Gaussian processes. 2.1. The-

oretical basis. A Gaussian process model is a flexible, probabilistic, non-
parametric model with uncertainty predictions. Its uses and properties for mod-
elling are reviewed in [14]. The use of Gaussian processes for modelling dynamic
systems is a relatively recent development [2,4, 8]. A retrospective review can be
found in [7].

A Gaussian process is a collection of random variables that have a joint
multivariate Gaussian distribution. The mean µ(x) and the covariance function
C(xp,xq) fully specify the Gaussian process. Note that the covariance function
C(·, ·) can be any function that has the property of generating a positive semi-
definite covariance matrix.
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The covariance function C(xp,xq) can be interpreted as a measure of the
distance between the input points xp and xq. For systems modelling it is usually
composed of two main parts, representing the functional part and the noise part.

A common choice is

(1) Cf (xp,xq) = v1 exp

[

−
1

2

D
∑

d=1

wd(xdp − xdq)
2

]

+ δpqv0,

where Θ = [w1 . . . wD v0 v1]
T are the ‘hyperparameters’ of the covariance func-

tions, D is the input dimension and δpq = 1 if p = q and 0 otherwise. Other
possible covariance functions are given in [9,14].

Consider a set of N D-dimensional input vectors X = [x1,x2, . . . ,xN ] and a
vector of output data y = [y1, y2, . . . , yN ]T . Based on the data (X,y), and given a
new input vector x∗, we wish to find the predictive distribution of the correspond-
ing output y∗. Unlike other models, there is no model-parameter determination as
such, within a fixed model structure. With this model, most of the effort involves
tuning the parameters of the covariance function. This is done by maximising the

log marginal likelihood (log(p(y|X)) = −
1

2
log(| K |) −

1

2
yTK−1y −

N

2
log(2π)),

where K is the N ×N training covariance matrix. The number of parameters to
be optimized is small (D+2, see equation (1)), which means that the optimization
convergence might be faster and that the ‘curse of dimensionality’ so common to
black-box identification methods is circumvented or at least decreased.

The described approach can be easily utilized for regression calculations.
Based on the training set X a covariance matrix K of size N ×N is determined.
As already mentioned, the aim is to find the distribution of the corresponding
output y∗ at some new input vector x∗ = [x1(N +1), x2(N +1), . . . , xD(N +1)]T .

For a new test input x∗, the predictive distribution of the corresponding
output is y∗|(X,y),x∗ and this is Gaussian, with a mean and a variance

µ(x∗) = k(x∗)T K−1 y,(2)

σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗),(3)

where k(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is the N × 1 vector of covariances
between the test and training cases, and k(x∗) = C(x∗,x∗) is the covariance
between the test input and itself.

Gaussian processes can, like other machine learning methods, e.g. neural
networks, be used to model static nonlinearities and can therefore be used for the
modelling of dynamic systems [8] if the delayed input and output signals are fed
back and used as regressors. In such cases an autoregressive model is considered,
such that the current output depends on the previous outputs, as well as on the
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previous control inputs.

x(k) = [y(k − 1), y(k − 2), . . . , y(k − L),

u(k − 1), u(k − 2), . . . , u(k − L)]T ,

y(k) = f(x(k)) + ǫ,(4)

where k denotes the consecutive number of the data sample. Let x denote the
state vector composed of the previous outputs y and inputs u up to a given lag
L, and ǫ is white noise.

As it can be seen from the presented relations, the obtained model not only
describes the dynamic characteristics of the nonlinear system, but also provides
information about the confidence in these predictions by means of the prediction
variance. The Gaussian process can highlight areas of the input space where the
prediction quality is poor, due to lack of data, by indicating a higher variance
around the predicted mean.

2.2. On-line modelling. A noticeable drawback of system identification
with Gaussian process models is the computation time necessary for the mod-
elling. Gaussian process regression involves several matrix computations in which
the load increases with the third power of the number of input data, such as ma-
trix inversion and the calculation of the log-determinant of the used covariance
matrix. This computational greed restricts the amount of training data, to at
most a few thousand cases. To overcome the computational-limitation issues and
also to make use of the method for large-scale dataset applications, numerous
authors have suggested various sparse approximations [12,13] as well as on-line
modelling [3], which is a special kind of sparse approximate method. A common
property to all sparse approximate methods is that they try to retain the bulk of
the information contained in the full training dataset, but reduce the size of the
resultant covariance matrix so as to facilitate a less computationally demanding
implementation of the GP model.

The selected on-line learning method [3], suited to our problem, is based on a
combination of a Bayesian on-line approach [11] and a sequential construction of
a relevant subsample of the data on which an approximation of the GP model is
based. This approximation is obtained by using parametrisation and projection
techniques. To keep the subset of the most relevant data a fixed size there are two
types of update to the GP model: a basic update that is performed when the error
of a new approximation is smaller than a defined threshold, and a full update,
which is performed otherwise. While a basic update only updates parameters
that present the approximation, without increasing their number, a full update,
besides updating parameters, also adds current data to the subset of most relevant
data. If this operation results in the maximum size of the subset being exceeded,
the least relevant data is removed.

Originally, this method was only capable of sequential training, so it did
not make predictions in an on-line fashion. Therefore we modified it in such a
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way that it also makes k-step-ahead predictions based on the newly updated GP
model with every new data entry. We believe that this modification improves this
method to the level where it can be applied for ozone forecasting.

3. Case study. The used data are the same as those in [5]. The data includes
hourly measurements of the concentrations of ozone, sulfur dioxide, nitrogen diox-
ide, phenol and benzene for the year 2008 collected at the automatic measurement
station in the centre of Burgas, Bulgaria. Since the situation changes depending
on the period of the year, it is necessary to use the data acquired throughout the
year for the development of the model for prediction.

It should be noted that for the training of the Gaussian process models the
mean hourly concentrations of ozone are used.

Considering the analysis of the regressors for this data from [5], the following
model structure is used

(5) cO3
(t + 1) = f(cO3

(t), cNO2
(t)),

where cO3
is the concentration of ozone in the air, cNO2

is the concentration of
nitrogen dioxide in the air and t are the hours of the day. A prediction of the
ozone concentration for a given hour based on this model depends on the values
of the ozone concentration and the nitrogen dioxide concentration only for the
previous hour.

A third-order model is also used for comparison

cO3
(t + 1) = f(cO3

(t), cNO2
(t),

cO3
(t − 1), cNO2

(t − 1),

cO3
(t − 2), cNO2

(t − 2)).(6)

In this case the prediction depends on the values of the ozone concentration and
the nitrogen dioxide concentration for all three previous hours.

It was shown in [5] that a satisfactory level of prediction can be achieved with
an off-line trained Gaussian process model. It should be noted, however, that the
computational demand associated with computing the mean and the variance of
a new prediction (equations (2), (3)) with a standard Gaussian process model
would be high if the model contains data throughout the year. The solution to
this problem is to utilise an on-line learning method that uses only a subset of
the data with satisfactory information content and that can cope with changes in
the conditions of the ozone-formation process. As it was already mentioned, the
method [3] was modified so that predictions can be made concurrently, while the
model is updating itself with incoming data.

The entire set of available data (the number of measurements is 6,105) is
used for testing the on-line modelling and prediction. The predictions are val-

idated with the standard mean relative square error (MRSE =

√

∑N
i=1 e(i)2

∑N
i=1 y(i)2

,
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where y(i) and e(i) = ŷ(i) − y(i) are the ozone concentration measurements and
the prediction error in the i-th prediction) and the logarithm of the predictive

density error (LPD =
1

2
log(2π) +

1

2N

N
∑

i=1

(

log(σ2(i)) +
e(i)2

σ2(i)

)

, where σ2(i) is

the prediction variance in the i-th step), which is the measure more suitable for
validating the Bayesian model predictions. The obtained validation measures are
given on Table 1.

T a b l e 1

Values of the mean relative square error (MRSE) and the
log predictive density error (LPD) for the first-index 1 –
and the third-index 3-order model for one-, two-, three-

and four-steps-ahead predictions

Steps ahead MRSE1 MRSE3 LPD1 LPD3

1 0.0480 0.0652 5.2140 5.7838

2 0.0913 0.1299 17.2909 18.3163

3 0.1322 0.1848 35.2957 38.6553

4 0.1712 0.2541 56.8864 61.0204

Predictions for up to four-steps ahead are made at every time sample. The
first-order model is compared with the third-order model to evaluate the quality
of the model predictions against the higher-order model. Note that all the pre-
dictions were taken into account including the predictions from the beginning of
the sequence when the on-line learned model contains a small amount of input
data. The number of data contained in the on-line updated Gaussian process
model never exceeds the 50 data points that are the carriers of information about
the dynamics of ozone concentration.

It is clear from Table 1 that the first-order model predictions, depicted in
bold style, are more accurate than those of the third-order model. The values of
the validation measures are increasing with the increasing steps of the prediction,
which is to be expected, but the first-order model provides consistently better
predictions than the third-order model. The predictions of the first-order model
for one-hour ahead for four days from different seasons of the year 2008 are
depicted in Fig. 1.

It is clear that the accuracy of the predictions for the time interval of interest
– between 9 a.m. and 4 p.m. – when the ozone concentration is the highest, is
good enough for practical forecasting of when the ozone safety limits are being
exceeded.

4. Conclusions. A modification of the on-line learning and prediction of
GP models is proposed in this paper for on-line, few-hours-ahead predictions of
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Fig. 1. One-step-ahead predictions for four days in various seasons of the year

the ozone concentration in the air of the town of Burgas, Bulgaria. The obtained
results in the case study show that the predictions based on the first-order model
are better than those based on the third-order model. Also, the predictions based
on the first-order model for the critical time interval are sufficiently accurate.

Future work will be directed towards an improvement of the on-line modelling
method for ozone-forecasting applications in practice and the utilisation of the
method for the forecasting of other compounds in the air.
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