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Abstract

Different models can be used for nonlinear dynamic system identification and the

Gaussian process model is a relatively new option with several interesting features:

model predictions contain the measure of confidence, the model has a small number

of training parameters and facilitated structure determination, and different pos-

sibilities of including prior knowledge exist. In this paper the framework for the

identification of a dynamic system model based on the Gaussian processes is shown,

illustrated on a simulated bioreactor example and then applied on two case studies.

The first one addresses modelling of the nitrification process in a wastewater treat-

ment plant and the second modells the biomass growth in the Lagoon of Venice.

Special emphasis is placed on model validation, an often underemphasised part of

the identification procedure, where the Gaussian model prediction variance can be

utilised.

Key words: nonlinear system identification, Gaussian process model,

biotechnological systems

1 Introduction

While there are numerous methods for the identification of linear dynamic sys-

tems from measured data, the nonlinear systems identification requires more
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sophisticated approaches. The most common choices include e.g. artificial neu-

ral networks (ANN) and fuzzy models, which can be seen as universal approx-

imators. One of the biggest practical disadvantages ANN has is the curse of

dimensionality [1] — the exponential growth of the modelled volume with the

input space dimension [2]—, leading to (a) ANN with big number of neurons

and (b) a lot of data needed for a system description. The local model network

(LMN) [1], a form of the fuzzy model, reduces this problem, but has problems

with a description of the off-equilibrium regions of the dynamical system [1,3].

As an alternative, the Gaussian process model was proposed for the identifica-

tion of nonlinear dynamic systems [3]. Gaussian process (GP) models present

a new, emerging, complementary method for nonlinear system identification.

The GP model is a probabilistic, non-parametric black-box model. It differs

from most of the other black-box identification approaches as it does not try

to approximate the modelled system by fitting the parameters of the selected

basis functions but rather searches for the relationship among measured data.

Gaussian process models are closely related to approaches such as Support

Vector Machines (SVM) and specially Relevance Vector Machines (RVM) [4]

due to the use of kernel functions [5]. Also the way RVM reduces the needed

parameters is similar to the way GP model “reduces“ the number of the equiv-

alent ANN parameters [5]. More on comparison of the GP model and the other

methods can be found in [5,6] and references therein.

The output of the Gaussian process model is a normal distribution, expressed

in terms of mean and variance. The mean value represents the most likely

output and the variance can be interpreted as the measure of its confidence.

The obtained variance, which depends on the amount and quality of available

identification data, is important information distinguishing the GP models
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from other methods. The GP model structure determination is facilitated

as only the covariance function and the regressors of the model need to be

selected. Another potentially useful attribute of the GP model is the possibility

to include various kinds of prior knowledge into the model, see e.g. [7] for the

incorporation of local models and the static characteristic. Also the number

of model parameters, which need to be optimised is smaller than in other

black-box identification approaches. The disadvantage of the method is the

potential computational burden for optimisation and prediction that increases

with amount of data and number of regressors.

The GP model was first used for solving a regression problem in the late

seventies, but it gained popularity within the machine learning community in

the late nineties of the twentieth century. Results of a possible implementation

of the GP model for the identification of dynamic systems were presented only

recently, e.g. [8,9]. The investigation of the model with uncertain inputs, which

enables the propagation of uncertainty through the model, is given in [4,10]

and illustrated in [11].

The purpose of this paper is twofold. First, to present the procedure of dy-

namic system identification using the model based on Gaussian processes.

Second, within this framework emphasis is placed on validation, which in-

cludes several features [12]: the model purposiveness, the model plausibility

and model falseness. Within this two objectives the use of properties differing

the GP model from other approaches, i.e prediction variance and the way

the input/output relations are encompassed, is emphasised. The validation of

a dynamic system model based on Gaussian processes is illustrated with a

simulated dynamic system example and demonstrated in two biotechnological

case studies, already used for the illustration of a GP model validation in [13].
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Biotechnological systems are often considered as complex, however simplified

input/output behaviour representations are sufficient for certain purposes, e.g.

feedback control design, prediction models for supervisory control, etc. In the

paper it is shown how the advantages of Gaussian process models can be used

in identification and validation of such models.

The paper is organised as follows. In Section 2 basic principles of the GP model

and its use in dynamic system identification are described. The methodology

of the identification with a GP model, presented on an illustrative example, is

given in Section 3. The identification of two biotechnological systems is given

in the next two sections, i.e. a wastewater treatment plant in Section 4 and

algae growth in the Venice lagoon in Section 5. In the last section the main

conclusions are gathered.

2 Modelling of dynamic systems with Gaussian processes

2.1 Modelling with the GP model

Here, modelling with the GP model is presented only in brief, for a more

detailed explanation see e.g. [6,14].

A Gaussian process is a Gaussian random function, fully described by its mean

and variance. Gaussian processes can be viewed as a collection of random vari-

ables f(xi) with joint multivariate Gaussian distribution: f(x1), . . . , f(xn) ∼

N (0,K). Elements Kij of the covariance matrix K are covariances between

values of the function f(xi) and f(xj) and are functions of corresponding argu-

ments xi and xj: Kij = C(xi,xj). Any function C(xi,xj) can be a covariance
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function, providing it generates a nonnegative definitive covariance matrix K.

Certain assumptions about the process are made implicitly with the covari-

ance function selection. The stationarity of the process results in the value

of covariance function C(xi,xj) between inputs xi and xj depending only on

their normalised Euclidian distance 1 and being invariant to their translation

in the input space, see e.g. [6]. Smoothness of the output reflects in outputs

f(xi) and f(xj) having higher covariance when inputs xi and xj are closer

together. The common choice [6,14] for the covariance function, representing

these assumptions, is the Gaussian covariance function:

C(xi,xj) = Cov[f(xi), f(xj)] = v exp

[

−
1

2

D
∑

d=1

wd(x
d
i − xd

j )
2

]

+ δijv0 (1)

where D is the dimension of the input space of vector x and ΘΘΘ = [w1, . . . , wD, v, v0]
T

is a vector of parameters called hyperparameters 2 . Additional linear terms of

the covariance function +a0 + a1

∑D
d=1(x

d
i x

d
j ) from [14] are omitted as station-

arity of the process is presumed. Hyperparameter v controls the magnitude

of the covariance and hyperparameters wi represent the relative importance

of each component xd of vector x. The part δijv0 represents the covariance

between outputs due to white noise 3 , where δij is the Kronecker operator and

v0 is the white noise variance. With the use of covariance function (1) the

total number of the GP model parameters is D+2 for the size D input, where

for example the number of comparable artificial neural networks parameters

would be, due to the curse of dimensionality problem, considerably larger.

1 also Mahalanobis distance [15].
2 The hyperparameters are higher level parameters of the model which include noise

variance and regularisation constants [16].
3 When assuming different kinds of noise the covariance function should be changed

appropriately, e.g. [16].
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Apart from the parameter v0, which expresses the process noise variance, no

physical insight about the underlying system is given by the hyperparameters,

which makes a GP model a black-box model.

The GP model fits nicely into the Bayesian modelling framework. The idea

behind GP modelling is to place the prior directly over the space of functions

instead of parameterizing the unknown function f(x) [6]. The simplest type

of such a prior is Gaussian. Consider the system

y(k) = f(x(k)) + ǫ(k) (2)

with white Gaussian noise ǫ(k) ∼ N (0, v0) with variance v0 and the vector of

regressors x(k) from operating space RD. We put the GP prior with covariance

function (1) with unknown hyperparameters on the space of functions f(.).

Within this framework we have y1, . . . , yN ∼ N (0,K) with K = Σ + v0I,

where ΣΣΣ is the covariance matrix for the noise-free system (2) and I is N ×N

identity matrix. Based on a set of N training data pairs {xi, yi}
N
i=1 we wish

to find the predictive distribution of yN+1 corresponding to a new given input

xN+1. For the collection of random variables (y1, . . . , yN , yN+1) we can write:

















y

yN+1

















∼ N (0,KN+1) (3)
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with covariance matrix
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(4)

where y = [y1, . . . , yN ]T is an N × 1 vector of training targets, k(xN+1) =

[C(x1,xN+1), . . . , C(xN ,xN+1)]
T is the N × 1 vector of covariances between

training inputs and the test input and k(xN+1) = C(xN+1,xN+1) is the au-

tocovariance of the test input. We can divide this joint probability into a

marginal and a conditional part. The marginal term gives us the likelihood of

the training data: p(y|X) ∼ N (0,K), where X is the N×D matrix of training

inputs.

We need to estimate the unknown hyperparameters ΘΘΘ = [w1, . . . , wD, v, v0]
T

of the covariance function (1), where the parameter v0 is the estimate of the

noise by which the training data is corrupted. This is usually done via maxi-

mization of the log-likelihood

L(ΘΘΘ) = log(p(y|X)) =

=−
1

2
log(| K |) −

1

2
yTK−1y −

N

2
log(2π) (5)

with the vector of hyperparameters ΘΘΘ and N × N training covariance matrix

K, where the hyperparameters distribution p(ΘΘΘ|y,X) is approximated with

their most likely values. The optimization requires the computation of the
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derivative of L with respect to each of the parameters:

∂L(ΘΘΘ)

∂Θi

= −
1

2
trace

(

K−1 ∂K

∂Θi

)

+
1

2
yTK−1 ∂K

∂Θi

K−1y (6)

Here, it involves the computation of the inverse of the N×N covariance matrix

K at every iteration, which can be computationally demanding for large N .

Second option is to approximate the hyperparameters distribution p(ΘΘΘ|y,X)

using Markov Chain Monte Carlo (MCMC) methods. The reader is referred

to e.g. [6] for detailed description of parameter optimisation methods.

Given that the hyperparameters are known, we can obtain a prediction of

the GP model at the input xN+1. The conditional part of (3) provides the

predictive distribution of yN+1:

p(yN+1|y,X,xN+1) =
p(y, yN+1)

p(y|X)
(7)

It can be shown [14] that this distribution is Gaussian with mean and variance:

µ(xN+1) =k(xN+1)
TK−1y (8)

σ2(xN+1) = k(xN+1) − k(xN+1)
TK−1k(xN+1). (9)

Vector k(xN+1)
T K−1 in (8) can be interpreted as a vector of smoothing

terms which weights training outputs y to make a prediction at the test

point xN+1. If the new input is far away from the data points, the term

k(xN+1)
T K−1 k(xN+1) in (9) will be small, so that the predicted variance

σ2(xN+1) will be large. Regions of the input space, where there are few data

or are corrupted with noise, are in this way indicated through higher variance.

From the system identification point of view the equation (8) provides the

model prediction and equation (9) its confidence.

8



2.2 Dynamic system identification

The presented GP model was originally used for modelling static nonlineari-

ties, but it can be extended to model dynamic systems as well [4,8,10]. Our

task is to model the dynamic system (2), where

x = [y(k − 1), . . . , y(k − L), u(k − 1), . . . , u(k − L)] (10)

is the vector of regressors that determines nonlinear ARX model structure of

the L-th order, and be able to make multi-step ahead model prediction.

One way to do multi-step ahead prediction is to make iterative one-step ahead

predictions up to desired step whilst feeding back the predicted output. Two

general approaches to iterated one-step ahead prediction are possible using

the GP model. In the first only the mean values of the predicted output are

fed back to the input. In this, so called “naive” approach, the input vector x

into the GP model at time step k is:

x = [ŷ(k − 1), . . . , ŷ(k − L), u(k − 1), . . . , u(k − L)] (11)

In the second, so called “exact”, approach the complete output distributions

are fed back. This way the information in predicted variance is not lost and the

model simulation gives more accurate results, especially in terms of predicted

variance, which is not overconfident as in “naive” approach. More on the GP

model simulation and differences of approaches can be found e.g. in [8,10].
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3 Gaussian process model identification methodology

In this section the framework for dynamic system identification with GP mod-

els is given. The identification framework consists of roughly six stages:

(1) defining the purpose of the model,

(2) model selection,

(3) design of the experiment,

(4) realisation of the experiment and data processing,

(5) training of the model and

(6) model validation.

The model identification is an iterative process. Returning to some previous

procedure step is possible at any step in the identification process and is

usually necessary.

3.1 The model purpose and model selection

The decision for the use of a specific model derives from the model purpose

and from the limitations met at the identification process. In this paper selec-

tion of the GP model is presumed. This approach can be beneficial when the

information about the system exists in the form of input/output data, when

data are corrupted, e.g. by noise and measurement errors, when a measure of

confidence in model prediction is required and when there is a relatively small

amount of data in respect to the selected number of regressors.

After the model is selected, its structure must be determined next. In the case

of the GP model this means selecting the covariance function and the model
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regressors. The choice of the covariance function reflects the relationship be-

tween data and is based on prior knowledge of the process. The standard choice

for smooth and stationary processes is function (1). Prior knowledge about

other attributes, e.g. periodicity, non-stationarity, can be expressed through a

different choice of the covariance function [6].

The second part of structure determination is the choice of suitable regressors.

In the case of a dynamic system model this also means selecting the model

order, which is the area of intensive research, as it is common difficulty to

all nonlinear identification methods. It has been pointed out in [17], that the

nonminimal realisation of the model might be required to capture the dynamic

of the nonlinear system, in accordance with Taken’s embedding theorem [18],

which determines the the necessary order of the model obtained from sampled

input-output data. For the selection of the GP model input space the reader

is also referred to [19]. A review of the general approaches for the choice of

regressors is given in [20].

The most frequent approach for regressor selection is the so called valida-

tion based regressor selection [20], where the search for the optimal vector of

regressors is initiated from some basic set of regressors. After the model opti-

misation and cross-validation, the regressors are added to or taken from the

model. Prospering models according to selected performance are kept while

dissatisfying models are rejected. In the case of normalised inputs the influ-

ence of each regressor can be observed through the value of the associated

hyperparameter. If the associated regressor is not relevant enough it can be

removed from the perspective model.
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3.2 Obtaining data – design of the experiment, experiment and data process-

ing

Data describing the unknown system is very important in any black-box iden-

tification. For a good description of the process the influential variables and

suitable sample time must be chosen.

The design of the experiment and the experiment itself are, as is always the

case in systems modelling, very important parts of the identification procedure.

The quality of the model depends on the system information contained in the

measurement data, regardless of the identification method. Nevertheless, the

design of the experiment is not the focus of this paper. More information on

this topic can be found e.g. in [21].

As already mentioned the Gaussian process modelling approach relies on the

relation among input/output data and not on approximation with basis func-

tions. Consequently, this means that the distribution of identification data

within the process operating region is crucial for the quality of the model.

Model predictions can be informative only if the inputs to the model lie in the

regions, where training data is available. The GP model is good for interpola-

tion, but not for extrapolation, which is indicated by large variances of model

predictions.

Consequently, the data for model training should be chosen reasonably, which

can be obstructed by the nature of the process (e.g. limitations in the exper-

iment design in industrial processes, physical limitations of the system). To

cancel the influence of different measuring scales, the preprocessing of mea-

sured data can be pursued, e.g centering and scaling, in this paper referred as
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normalisation.

3.3 Model training

In the GP model approach training means optimization of hyperparameters

ΘΘΘ from (1). Each hyperparameter wd expresses the relative importance of

the associated regressor, similar to the automatic relevant detection (ARD)

method [14], where a higher value of wd expresses higher importance of the

regressor. Hyperparameter v expresses the overall scale of correlations and hy-

perparamter v0 accounts for the influence of noise [14]. Several possibilities of

hyperparameter determination exist. A very rare possibility is that hyperpa-

rameters are known in advance as prior knowledge. Almost always, however,

they must be determined from the training data, where different approaches

are possible, e.g. [10]. Mostly the likelihood maximization (ML) approach is

used as it gives good results despite its simplification, where any optimization

method could be used to achieve ML [10].

3.4 Model validation

Validation concerns the level of agreement between the mathematical model

and the system under investigation [22] and it is many times underemphasised

despite its importance. Several features can represent the quality of the model.

Their overview can be found e.g. in [12,22]. The most important are model

plausibility, model falseness and model purposiveness, explained as follows.

Model plausibility expresses the model’s conformity with the prior process

knowledge by answering two questions: whether the model “looks logical” and
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whether the model “behaves logical”. The first question addresses the model

structure, which in the case of GP models means mainly the plausibility of

the hyperparameters. The second one is concerned with the responses of the

model output to typical events on the input, which can be validated with

visual inspection of the responses as is the case with other black-box models.

Model falseness reflects the agreement between the process and the model out-

put or the process input and the output of the inverse model. The comparison

can be done in two ways, both applicable to GP models: qualitatively, i.e. by

visual inspection of differences in responses between the model and the pro-

cess, or quantitatively, i.e. through evaluation of performance measures. Beside

commonly used performance measures such as e.g. mean relative square error

(MRSE, [23]), which compares only the mean prediction of the model to the

output of the process:

MRSE =

√

√

√

√

∑N
i=1 e2

i
∑N

i=1 y2
i

(12)

where yi and ei = ŷi − yi are the system’s output and prediction error in i-th

step of simulation, the performance measures such as log predictive density

error (LD, [8,10]) can be used for evaluating GP models, taking into account

not only mean prediction but the entire predicted distribution:

LD =
1

2
log(2π) +

1

2N

N
∑

i=1

(

log(σ2
i ) +

e2
i

σ2
i

)

(13)

where σ2
i is the prediction variance in i-th step of simulation. Performance

measure LD weights the prediction error ei more heavily when it is accompa-

nied with smaller predicted variance σ2
i , thus penalising overconfident predic-

tions more than acknowledged bad predictions, indicated by higher variance.

Another possible performance measure, applicable in the training procedure,
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is the negative log-likelihood of the training data (LL, [10]):

LL =
1

2
log | K | +

1

2
yTK−1y +

N

2
log(2π), (14)

where K is the covariance matrix, y is the vector of targets and N is the

number of training points. LL is the measure inherent to the hyperparameter

optimisation process, see (5), and gives the likelihood that the training data

is generated by given, i.e. trained, model. The smaller the MRSE, LD and LL

are, the better the model is.

Variance of the model predictions on a validation signal can be a validation

measure itself, as it indicates whether the model operates in the region, where

identification data were available. Nevertheless, it should be used carefully and

in combinations with other validation tools, as predictions with small variance

are not necessary good, as it will be shown in the following illustrative example.

Model purposiveness or usefulness tells whether or not the model satisfies its

purpose, which means the model is validated when the problem that motivated

the modelling exercise can be solved using the obtained model. Here, again,

the prediction variance can be used, e.g. when the prediction confidence is too

low, the model can be labeled as not purposive.

3.5 An illustrative example of GP model dynamic system identification

The purpose of this example is to demonstrate the GP model identification

procedure with special emphasis on the utility of prediction variance and other

GP model specific measures for model validation. The example illustrates how

validation is used as the selection criteria for the best model. The selected

model is then used to demonstrate the influence of increased noise variance
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on the system’s output, the behaviour of the model prediction in unmodelled

regions and the behaviour of the model when a new, unmodelled input is

introduced to the system.

The second order discrete bioreactor model [24] was taken as the system to be

identified for demonstration purposes. In the bioreactor the microorganisms

grow by consuming the substrate. The bioreactor is given as the discrete second

order dynamical system [24] with sampling time Ts = 0.5s:

x1(k + 1) = x1(k) + 0.5
x1(k)x2(k)

x1(k) + x2(k)
− 0.5u(k)x1(k)

x2(k + 1) = x2(k) − 0.5
x1(k)x2(k)

x1(k) + x2(k)
− 0.5u(k)x2(k) + 0.05u(k) (15)

y(k) = x1(k) + ǫ(k)

where x1(k) is the concentration of the microorganisms and x2(k) is the con-

centration of the substrate. The control input u(k) is the output flow rate,

limited between 0 ≤ u(k) ≤ 1. Output of the system y(k) is the concentration

of microorganisms, corrupted by white Gaussian noise ǫ(k) with standard de-

viation σ = 0.0005. Our task is to model this system with the GP model and

validate the acquired model.

To acquire the identification data, system (15) was excited with the control

input signal u in the form of 4s long stairs with random amplitude values be-

tween 0 ≤ u(k) ≤ 0.7. Note that the upper limit of the input signal was chosen

so that a part of the operating region remained unmodelled. The bioreactor

was modelled with fourth, third and second order model. Before training of

the models the signals were normalised, so that they had a maximum value of

one and a minimum value of minus one. From normalised signals 602 training

points were composed. i-th training point at the sample step k for the L-th
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order GP model, L = 2, 3, 4, is composed from the input regressors:

xi = [yn(k − 1), . . . , yn(k − L), un(k − 1), . . . , un(k − L)]

and the output value yi = yn(k), where un and yn are normalised input and

output signals. Gaussian covariance function (1) was chosen for the covariance

function as the smooth and stationary output is presumed and considered as

a prior.

All three GP models were validated with simulation, where the validation data

was obtained by simulating the system (15) using similar but not the same

control input signal u(k) as for obtaining identification data.

The results of the regressor selection procedure can be seen in Table 1. Perfor-

mance measure LL was used with the training data and performance measures

MRSE and LD were used on the validation data.

From the performance measures used on the validation results, shown in the

first three rows of Table 1, can be seen that the second order model proves

best among three identified models in terms of MRSE and LD values of the

simulation results. Beside the MRSE and LD values of the simulation results,

the second order model is also favoured by the Occam’s razor principle [6],

stating that the most simple explanation of the given problem should be used.

Hyperparameters wxi reflect the relative importance of regressors x(k− i) and

in all model structures the regressor y(k−1) can be excluded due to the small

value of the associated hyperparameter wy1 . The removal of this regressor from

the selected second order model results in even better validation results.

This regressor selection procedure lead us to the GP model, in Table 1 marked
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as ♠, with the following regressors: [y(k − 2), u(k − 1), u(k − 2)].

[Insert Table 1 about here]

The simulation results on the validation data for the selected second order

model can be seen in Figure 1, where the model’s output and the noise free

target are depicted. It can be seen that most of the time the value of the pre-

dicted standard deviation σ is around 5·10−4, corresponding to the noise level

present at the system’s output. The prediction variance increases at the steps

where the input u changes its value due to the small number of training points

describing those regions, resulting in the increase of the k(x) − k(x)K−1k(x)

part of the (9). It can also be observed that the error of the model prediction

remains inside the 95% confidence limits, defined within ±2σi, indicating the

level of trust which can be put in the prediction.

[Insert Figure 1 about here]

These model validation results will serve as the reference for the observation

of how different conditions can influence the model prediction and validation.

First, it will be shown how model prediction changes when the model reaches

the unmodelled region of the system. As there is no training data available

nearby, the model must extrapolate from the data describing the neighbouring

regions in order to make predictions. This worsens the prediction mean, but

is also accompanied by the increase of the prediction variance, thus widening

the model confidence limits. This effect can be observed in Figure 2, where

the values of the control input were increased above the u(k) > 0.7 at time

t > 12s.
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[Insert Figure 2 about here]

Second, we would like to show how the increase of the system’s output noise

variance reflects in the identified model. For this purpose the standard devi-

ation of the system’s output noise was increased to σ = 2·10−3. The control

input signal, used for generating identification and validation data, was the

same as in the reference example. The second order GP model is identified

and again the regressor y(k − 1) is removed. The values of the GP model

hyperparameters can be seen in Table 1 (the line, marked with ♣).

The mean model prediction is satisfactory and the prediction variance is in-

creased on account that higher output noise variance is predicted, as can be

observed from the simulation results on validation data in Figure 3. The es-

timation of the system’s output noise is satisfactory close to the real value,

i.e. σ = 2.1·10−3, which also shows, that the value of the hyperparameter v0

tends to the value of the system’s output noise when enough training data

is used. The value of MRSE is slightly worse as in the reference example, as

this model is identified with more noise present in the training data. Also the

value of LD is slightly worse as, despite the increased variance, the influence

of the prediction error prevails.

[Insert Figure 3 about here]

Finally, we would like to show how the unmodelled regressor influences the

model. For this purpose an extra regressor in the form of additional control

input z, not correlated to input u, was added to the system. The effect of this

input is the same as the effect of the control input u and could represent an
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additional outlet or leak of the system (15), which changes the description to:

x1(k + 1) = x1(k) + 0.5
x1(k)x2(k)

x1(k) + x2(k)
− 0.5u(k)x1(k) − 0.5z(k)x1(k)

x2(k + 1) = x2(k) − 0.5
x1(k)x2(k)

x1(k) + x2(k)
− 0.5u(k)x2(k)

−0.5z(k)x2(k) + 0.05u(k) + 0.05z(k) (16)

y(k) = x1(k) + ǫ(k)

The reference GP model was used for prediction, where the input z is not

present and therefore neglected at the training of the model. The control input

in the form of a step z = 0.05 is introduced into the system at validation time

30s. The (non)influence of the unmodelled regressor on the prediction variance,

when the model operates in the region with sufficient training data, can be

seen in Figure 4. The model prediction from time t = 30s worsens, but the

95% confidence limits remain tight. This example shows that the variance

cannot be informative on the unaccounted influences on the system in the

identification data.

[Insert Figure 4 about here]

With the bioreactor example the following properties of the GP model have

been illustrated:

(1) The hyperparameters’ ARD property can be effectively used to reduce

the number of regressors of the identified model.

(2) There are two possible causes for the increase of the prediction variance:

• the particular region of the system, where the model makes predictions,

is described with insufficient training data and

• the data, describing particular regions, contains more noise. In the ex-
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ample this has been shown for the whole region, but the same goes

when noise is increased only in part of the system’s operating region.

These two causes can not be easily distinguished without prior knowledge

about the identified system.

(3) When nonmodelled influence is introduced to the system, the model pre-

diction, including the variance, does not change.

4 Case study 1 – Activated sludge model for a wastewater treat-

ment plant

4.1 Introduction

In the first case study we would like to show the possibilities and attributes

of the GP model identification and associated model validation by means of

nitrification process identification in a wastewater treatment plant (WWTP).

The process of interest is moving bed biofilm reactor pilot plant in Domžale-

Kamnik WWTP. The case study is adopted from [23], where it was identified

with linear and parametric nonlinear models.

The pilot plant (see Figure 5) consists of an anoxic reactor (176m3), two aero-

bic reactors (130 and 117m3), a mixed reactor (115m3) and a settler (600m3)

[23,25]. The main process of ammonia (NH4-N) removal is nitrification, which

runs in aerobic reactors. It is strongly dependant on dissolved oxygen (DO)

concentrations in the aerobic reactors. The other process variables that influ-

ence the nitrification process are dissolved influent flowrate, influent ammo-

nia concentration and temperature. The identified variable is the ammonia

concentration at the outlet. The biomass in the plant is attached to plastic
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carriers, which flow freely in the anoxic and both aerobic reactors. High DO

concentration is needed to drive the diffused oxygen into the biofilm.

[Insert Figure 5 about here]

4.2 Model purpose

The purpose of the developed model is multi-step ahead prediction, which

could be used e.g. for model predictive control (MPC) or for model based

supervisory control.

4.3 Identification data

For the identification the same data was used as in [23]. We did not have

the possibility to influence the data acquisition. This also slightly changes the

order of the identification procedure steps. The data describing the WWTP

was gathered during several weeks of experiments in February and April 2004.

The measured quantities were the ammonia concentration at the inlet Sin and

at the outlet Sout of the plant, the input flowrate Φ, the DO concentrations in

both aerobic reactors DO1,DO2 and the temperature T . Sample time of the

measurements was Ts = 15 minutes. As the input flowrate was almost constant

its influence on the output of the process was neglected. The measured data

can be seen in Figure 6 with February data (Set 1) on the left and April

data (Set 2) on the right. Due to the damaged sensor the values of DO2

concentration for the first seven days in Set 1 are false and were not used.

[Insert Figure 6 about here]
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Data from both sets was divided into training and validation data sets. The

samples from the beginning and the end of the data sequences were used for

training and the five-day intervals in the middle of the data sequences were

used for validation, as seen in Figure 7, resulting in training and validation

data consisting of data from both sets. The purpose of such selections lies

in the nature of the GP model, which demands the training data distributed

in all regions, where the predictions are conceived. Before training the data

was normalised, so that all the signals had a maximum value of one and a

minimum value of minus one. Altogether about 1200 input/output samples

were used for the training of the GP model.

[Insert Figure 7 about here]

4.4 Model structure selection and model training

As a stationary, nonlinear process with smooth output was presumed, the

covariance function (1) is chosen. The regressors were selected based on the

validation based regressor selection procedure, the method explained in the

illustrative example, but with modification due to the large number of the

potential regressors and limited amount of the identification data. The easiest

way to select the regressors would be to consider all the potentially useful

regressors at once, train the model and then use the ARD property of the

hyperparameters to eliminate the regressors with low impact. The problem

is that the system has a lot of control inputs and the number of potentially
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needed regressors is too large for the available amount of training data 4 .

Therefore the regressor selection procedure was broken down to smaller steps,

where particular regressor groups were tested and the resulting models val-

idated. Models giving better results were kept, their regressors not carrying

enough information neglected and new, potentially beneficial regressors were

added. This procedure is longer and more difficult to pursue, as in principle

many possible regressor combinations in the regressor pool must be tested.

Based on the prior process knowledge from [23] and its authors, the following

regressors were chosen for the initial GP model structure: [S1,2,3
out S4

in T 2 DO3
1 DO1

2],

where the superscript denotes the delay, e.g. S4
in = Sin(k − 4). For the val-

idation and comparison of different identified models the same performance

measures were used as in illustrative example, i.e. negative log-likelihood of

identification data (14), mean relative square error (12), log-predictive den-

sity (13) and visual inspection of the validation data. Values of the perfor-

mance measures for only some among many of the identified GP models can

be seen in Table 2 to illustrate the main search direction among the different

sets of regressors. The ARD property of the GP models’ hyperparameters was

used to remove the regressors not contributing much information.

[Insert Table 2 about here]

Through this procedure a satisfactory GP model, marked with † in Table 2,

4 Even if there had been enough training data, the training of the GP model of

such dimensions would have demanded considerable amounts of computer time due

to the inversion of the large covariance matrix, see (6), at every optimisation step

[6].
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with regressors [S1,2,3
out S

3,4
in T 2,6 DO

2,3
1 DO

2,4
2 ] was obtained. The hyperparam-

eters of this model are given in Table 3. We can observe, that three of the

hyperparameters wd are relatively small compared to others, i.e. the hyperpa-

rameters corresponding to the regressors S2
out, S4

in and T 2, smaller than 10−4.

The three regressors were removed, leading to the final model, in Table 2

marked with ♠. Because of removing of some of the less informative regressors

the value of LL on identification data increased, but according to MRSE and

LD values on validation data, the model performs best among all of the tested

GP models.

[Insert Table 3 about here]

4.5 Model validation

The “naive” simulation (Section 2.2) with validation data Sets 1 and 2 (Fig-

ure 7) was selected for the qualitative validation of the GP model. The results

of the simulation can be seen in Figure 8. The peaks and crashes of both the

model and the process responses coincide, which suggests satisfactory dynamic

behaviour, despite noticeable error in some regions. Relatively low estimated

system’s output noise variance v0 = 0.0191 and the tight prediction confidence

limits relatively to the prediction error indicate that some of the system func-

tional dependencies remained unmodelled, as demonstrated in the previous

illustrative example.

[Insert Figure 8 about here]

Comparison of the model performance with that in [23], where the model has
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similar dynamic behaviour and MRSE around 0.45, indicates that the acquired

GP model is slightly better. However, it should be noticed here that the di-

vision of the data on training and validation set was different in [23], where

the entire Set 2 was used for training and the entire Set 1 for validation. For

the first principles modelling approach the selection of training data is not

that crucial, as the structure of the parametric model reflects the assumed

underlying physical and chemical principles among the data in the entire op-

erating region, while for the GP model the relationship between the data is

not explicit and the model must extrapolate in the regions, where no data is

available for modelling.

The model in [23] was identified for the design of a model predictive controller.

To validate the GP model usefulness, the model was used for the multi-step

ahead prediction. Dependance of the MRSE and LD for the multi-step ahead

prediction up to the horizon k = 24 (6h) are depicted in Figure 9. The results of

a 24-step ahead prediction, just as the simulation results, suggest unmodelled

system dependencies through the high value of the LD measure and very

tight confidence limits. Still, the mean prediction, evaluated with the MRSE

is satisfactory.

[Insert Figure 9 about here]

As the GP model performs slightly better than the models identified in [23]

and labeled as useful, we can conclude that the identified GP model would be

useful too, despite being false and not plausible in some regions.
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5 Case study 2 – Lagoon of Venice

The purpose of this example is solely to demonstrate a possible utility of con-

fidence measure provided with the Gaussian process model. The development

of the input/output model for biomass growth in the Lagoon of Venice is taken

as a case study. The Lagoon of Venice measures 550 km2, but is very shallow,

with an average depth of less than 1 m. It is heavily influenced by anthro-

pogenic inflow of nutrients 7 mio kg/year of nitrogen and 1.4 mio kg/year

of phosphorus [26]. These (mainly nitrogen) loads are above the Lagoons ad-

missible trophic limit and generate its dystrophic behaviour, characterised by

excessive growth of algae, mainly Ulva rigida. Very modest sets of measured

data were available [27] for modelling the growth of algae in the Lagoon. The

data were sampled weekly for slightly more than one year. The sampled quan-

tities are nitrogen in ammonia NH3, nitrogen in nitrate NO3, total nitrogen

N , phosphorus in orthophosphate PO4, all in [µg/l], dissolved oxygen DO in

percentage of saturation, temperature T [◦C], and algae biomass B, dry weight

in [g/m2].

The purpose of the model is the prediction of the algae growth in the lagoon,

making the algae biomass B the output of the system. Other sampled quanti-

ties are taken as the possible inputs. As the amount of available training data

is very small, only the first order model with seven regressors is presumed.

Two sets of measurements with 43 sampled values were utilised, both heavily

corrupted with the measurement errors of order 20-50% [26]: one for the GP

model training and other for the model validation. The normalisation of the

measurement data had been used before identification.
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As in previous examples, the validation based regressor selection method was

used for the selection of regressors. The lack of the identification data in this

study is even more stressed than in the previous example. Several combi-

nations of regressors for the first order model structures were tried and the

models were validated with the visual inspection and the use of performance

measures MRSE (12) and LD (13) of the one-step ahead prediction results on

validation data. Due to the scarce information contained in the identification

data there was no significant difference between identified models, making

regressor selection hard to pursue.

Through the validation based regressor selection method the following input

regressors were selected for the prediction of algae biomass B(k) at the time

step k:

[B(k − 1) T (k − 1) DO(k − 1) N(k − 1)],

with the values of corresponding hyperparameters:

w1 = 177, w2 = 6.6·10−7, w3 = 32, w4 = 5, v = 2.8 and hyperparameter

v0 = 1.0·10−3, corresponding to the estimate of noise standard deviation of

σ = 33.8. The regressor T (k−1) was removed from the model due to the small

value of hyperparameter w2, resulting in the model with following regressors:

[B(k − 1) DO(k − 1) N(k − 1)].

The results of the one-step ahead prediction on the identification and valida-

tion data can be seen in Figure 10 and the results of the simulation on the

validation data set can be seen in Figure 11. The values of the performance

measures for one-step ahead prediction with the identification data and one-

step ahead prediction and simulation with training data are given in Table 4.
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[Insert Figure 10 about here]

[Insert Figure 11 about here]

[Insert Table 4 about here]

The model fits the identification data well, but the presented one-step ahead

prediction and simulation results on validation data exhibit high MRSE. Nev-

ertheless, the results are comparable to those obtained by other modelling

investigations of the same case study, e.g. [26] 5 and references in there, where

they are evaluated as potentially acceptable if peaks and crashes of the biomass

concentration are predicted correctly.

However, the 95% confidence limits in Figures 10 and 11, depicting the model’s

one-step ahead and simulation results on the validation data set clearly indi-

cate that the confidence in the obtained model is very low 6 . From the pre-

diction variance it can be concluded that this GP model is not to be trusted,

regardless of the potentially acceptable mean values of the predictions, as it

predicts in the region where not enough training information was available.

This decision can be made straightforwardly based on the available confi-

dence limits, which come as a handy validation utility. Also the relatively low

5 In [26] the combination of knowledge-driven and data-driven approach to mod-

elling was used. In one case the inputs DO and NH 3 are used to predict the state

B, in the second case the input T is used additionally.
6 Note that for demonstration purposes no limitations have been induced on the

prediction, resulting in mean values and the 95% confidence limits sometimes sinking

below the physically impossible concentration zero.
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estimate of noise standard deviation σ = 33.8 suggest, that more training

data should be used, as the predicted variance does not match the estimated

measurement errors like in e.g the bioreactor example, where the increase of

system’s output noise variance was accompanied with corresponding increase

of the prediction variance.

This example was used to demonstrate the use of prediction variance for the

validation of the identified GP model. The model itself could be improved

with the use of more identification data.

6 Conclusion

In this paper the Gaussian process model is used for dynamic systems identi-

fication with emphasis on some of its properties: model predictions containing

the measure of confidence, low number of parameters and facilitated structure

determination.

The GP model identification procedure with emphasis on the validation has

been illustrated with a simulated example and applied to two case studies.

The wastewater treatment plant case study resulted in a purposeful model,

while the algae growth model of the second case study showed that the lack

of information content in training data prevents the development of a trustful

Gaussian process model.

The prediction variance is one of the main differences between the GP model

and other models. It can be effectively used in the usefulness validation, where

the lack of confidence in the model prediction can serve as the grounds to reject

the model as not useful. The prediction variance can also be used in falseness
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validation, whether via specific performance measures such as log-predictive

density error, or through observation of confidence limits around the predicted

output. Despite its usefulness in model validation, it should be accompanied

with standard validation tools, as the small variance does not necessarily mean

that the model is of good quality, as shown in the case study one.

In the validation based regressor selection procedure the log-predictive density

error and the log-likelihood of the training data can be useful in selecting model

regressors as shown in the first case study. In the case of normalised inputs,

the model hyperparameters indicate the influence of corresponding regressors

and can be used as a tool for removal of uninfluental regressors at the regressor

selection stage of the model selection.

Small amount of data relative to the number of selected regressors, data cor-

rupted with noise and measurement errors and the need for the measure of

model prediction confidence could be the reasons to select identification with

the GP model. If there is not enough data or it is heavily corrupted with noise,

even the GP model can not perform well, but in that case the inadequacy of

the model and the identification data is indicated through higher variance of

the predictions as seen in case study two.

As the presented results have shown the GP model’s potential for the identifi-

cation of nonlinear dynamic systems, the next step would be to apply the GP

model to problems, where the advantages of the GP model could be effectively

used, e.g. control design, diagnostic system design etc.
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validation on proper selection of process models — an industrial case study.

Computers and Chemical Engineering, 2005, 29, 1507–1522.
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Table 1

Values of validation performance measures and hyperparameters of different bioreactor GP models

Model Id. data Valid. data Hyperparameters noise‡

order LL∗ MRSE∗ LD∗ wy4 wy3 wy2 wy1 wu4 wu3 wu2 wu1 v σ

4 -1628 8.5·10−3 -6.11 1.2·10−2 2.6·10−2 4.3·10−2 2·10−6 6·10−6 1.7·10−2 1.8·10−2 1.8·10−2 6.0 5.0·10−4

3 -1621 7.5·10−3 -6.12 × 2.5·10−3 6.6·10−2 4·10−4 × 3.6·10−3 3.6·10−3 3.6·10−3 18 5.2·10−4

2 -1612 6.1·10−3 -6.41 × × 3.0·10−2 1.1·10−3 × × 5.2·10−3 5.1·10−3 28 5.3·10−4

2 ♠ -1612 4.4·10−3 -6.42 × × 3.0·10−2 × × × 5.2·10−3 5.1·10−3 28 5.3·10−4

2 ♣ −793 5.0·10−3 −5.19 × × 4.3·10−2 × × × 9.2·10−3 9.2·10−3 10.4 2.1·10−3

Notes:

‡ identified noise standard deviation σ

♠ reduced number of regressors by neglecting the regressor y(k − 1)

♣ identified on the output signal with increased noise standard deviation, σ = 0.002
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Table 2

Identification and validation of the GP models with various structures — the values

of the performance measures

Regressors Ident. data Validation data∗

Sout Sin T DO1 DO2 LL MRSE LD

3,2,1 4 2 2 1 -3590 1.950 148

3,2,1 4 4 2,4 1,5 -3617 0.828 271

3,2,1 3,4 2,4 2,4 1,2 -3643 0.325 114

3,2,1 3,4,7 2,4 2,4 1,2,4 -3649 0.321 114

† 3,2,1 3,4 2,6 2,3 2,4 -3649 0.313 108

♠ 3,1 3 6 2,3 2,4 -3640 0.295 96

3,2,1 3,4,7 2,4,6 2,3,4 2,4 -3650 0.316 110

3,2,1 3,4,7 2,4,6 2,4,6 1,2,4 -3650 0.319 112

3,2,1 3,4,9 2,6,9 2,3 1,2,4 -3657 0.318 113

Notes: ∗ Validation data Sets 1 and 2 combined

† Selected GP model

♠ Selected GP model after removing uninformative regressors
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Table 3

Values of the hyperparameters for the selected GP model

Sout Sin T DO1 DO2 v v0

delay 1 2 3 3 4 2 6 2 3 2 4

model 1† 0.089 1.02·10−6 1.45·10−2 3.0·10−3 8.3·10−5 4.4·10−5 2.1·10−4 4.1·10−4 1.10·10−3 1.33·10−3 3.3·10−4 6.2 1.33·10−4

model 2♠ 0.2 × 2.7·10−2 2.9·10−3 × × 1.07·10−2 6.8·10−4 1.27·10−3 3.4·10−3 8.8·10−4 2.6 1.32·10−4

Notes: The values of hyperparameters for normalised data

† Selected GP model

♠ Selected GP model after removing uninformative regressors38



Table 4

The values of the performance measures for one-step ahead prediction and simula-

tion results

Ident. data Valid. data

one-step one-step sim

MRSE 0.068 1.13 1.10

LD 4.7 8.3 7.4
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Figure captions:

Figure 1: Validation with simulation for the bioreactor GP model, |e| is the

absolute value of the error between the predicted and the true values

Figure 2: GP model prediction in the not modelled region

Figure 3: Influence of the increased system’s output noise variance on the GP

model

Figure 4: Influence of the nonmodelled input on the GP model prediction

Figure 5: The scheme of the Domžale-Kamnik wastewater treatment plant

Figure 6: Process data for the identification, Set 1 from February (left) and

Set 2 from April 2004 (right)

Figure 7: Dividing identification data on training and validation data for Set

1 (left) and Set 2 (right), shown for the identified variable Sout

Figure 8: Validation with simulation for Set 1 (left) and Set 2 (right)

Figure 9: Values of the MRSE (left) and LD (right), depending on the length

of horizon

Figure 10: Comparison of one-step ahead predictions for identification (left)

and validation data (right)

Figure 11: Simulation of the GP model with validation data
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