
AN APPLICATION OF GAUSSIAN PROCESS
MODELS FOR CONTROL DESIGN
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Abstract:
This paper describes a method of modelling nonlinear dynamical systems from
measurement data for control design purpose. The method merges linear local
model blending approach with Bayesian Gaussian process modelling. Fixed-
Structure Gaussian Process model can be interpreted as linear model structure
with varying and probabilistic parameters, which are represented with Gaussian
process models. It can be applied for extended local linear equivalence class of
nonlinear systems. The obtained nonlinear system model can be used for control
system design based on parametric process model. The modelling and control
design will be illustrated with a simple example. Copyright c© 2006 USTARTH
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1. INTRODUCTION

A number of identification methods exist for mod-
elling nonlinear dynamic systems from data. One
possible approach to modelling are local model
networks (LMN) which are attractive for so called
divide and conquer control design (Murray-Smith
and Johansen, 1997). In this approach global be-
haviour is represented with the network of simple
local models where each local model describes
some particular operating region and global be-
haviour is achieved by blending the dynamics of
the local models. An important issue of this ap-
proach is the realisation of a model blending which
has a strong impact on blended model trans-
parency in off-equilibrium regions described in
(Murray-Smith et al., 1999; Johansen et al., 2000;
Leith and Leithead, 1999). LMN approaches, re-
gardless of the blending realisation, also encounter
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the issue of scheduling vector selection. Scheduling
vector is a vector defining the current region of
operation and assists the blending mechanism to
properly match the nonlinear dynamics.

A way to deal with the issue of model’s off-
equilibrium behaviour and retaining the trans-
parency of system is representing the nonlinear
system in the velocity based linearisation (VBL)
form (Leith and Leithead, 1999). VBL in contrast
to conventional series expansion approach enables
the representation of system in every operating
point. Nevertheless, the blending and scheduling
mechanisms need to be determined for every non-
linear system. Prior knowledge about the system
itself is used for determination of these two mech-
anisms whenever it is available.

There exist alternative approaches. It was shown
in (Murray-Smith et al., 1999) that Gaussian
process (GP) models can be effectively used to
deal with modelling of dynamics in off-equilibrium



regions even when the data there is relatively
sparse.

GP models can be used for modelling of dy-
namic systems in various ways, e.g. as regres-
sion model describing nonlinear system (Kocijan
et al., 2005), regression model with incorporated
prior knowledge of linear local models (Solak et
al., 2002; Leith et al., 2002; Ažman and Koci-
jan, 2005) or GP local model network (Gregorčič
and Lightbody, 2005). However, since the GP
model is a probabilistic nonparametric model, the
only possible control approach with such model
available is predictive control.

Another application of a GP modelling is its
use for the identification of a nonlinear structure
(Leithead et al., 2003) important for determina-
tion of scheduling variables.

In this paper an approach is proposed where
an unknown nonlinear system is modelled using
a linear model with varying parameters. These
parameters are predicted using the GP models
according to the current operating region. GP
models are useful for modelling for several reasons.

• They tend to achieve acceptable modelling
results even with relatively small training
data sets.

• Beside predicting the output the GP model
also gives the measure of confidence in pre-
diction dependant on the training data den-
sity.

• When local models are blended with the GP
models as the local models’ parameters these
GP models incorporate also the information
about the dependance of parameters on indi-
vidual regressors.

The resulting model, named Fixed-Structure Gaus-
sian process (FSGP) model, can be seen as a
parametric model, namely a fixed linear model
structure with GP models representing varying
parameters. This kind of nonlinear system model
offers possibility for application of various control
design methods.

The paper is organized as follows. In Section 2,
the Gaussian process model is briefly reviewed. In
Section 3, the Fixed-Structure Gaussian Process
model is introduced and in Section 4 a possible
control design is discussed. An illustrating exam-
ple is given in Section 5 and the conclusions are
given in Section 6.

2. GAUSSIAN PROCESS MODEL

A detailed presentation of Gaussian processes can
be found e.g. in (Rasmusen and Williams, 2006).
A Gaussian process is a random function fully
characterized by its mean and covariance func-

tions. For simplicity, we assume a zero-mean
process. Given {x1, . . . ,xn}, the corresponding
f(x1), . . . , f(xn) can be viewed as a collection
of random variables which have a joint multi-
variate Gaussian distribution: f(x1), . . . , f(xn) ∼
N (0,Σ), where Σpq gives the covariance between
f(xp) and f(xq) and is a function of the corre-
sponding xp and xq: Σpq = C(xp,xq). The covari-
ance function C(., .) can be of any kind, provided
that it generates a positive definite covariance
matrix Σ. The Gaussian Process model fits nat-
urally in the Bayesian modelling framework, as
it places a prior directly over functions, instead
of parameterizing f(x). In the following, we as-
sume a stationary process, where the stationarity
assumption implies that the covariance between
two points depends only on the distance between
them and is invariant by translation in the input
space. A common choice of covariance function is
the squared exponential or Gaussian one:

Cov[f(xp), f(xq)] = C(xp,xq) =

= v1 exp

[
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2

D∑
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]
+ v0δpq

where xd
p denotes the dth component of the D-

dimensional input vector xp, and v1, v0, w1, . . . , wD

are free parameters and δpq is Kronecker operator.
This covariance function is such that points close
together in the input space lead to more correlated
outputs than points further apart (a smoothness
assumption). The parameter v1 controls the verti-
cal scale of variation, v0 is noise variance and the
wd’s are inversely proportional to the horizontal
length-scale in dimension d.

Let the input/target relationship be y = f(x)+ ε.
We assume an additive white noise with variance
v0, ε ∼ N (0, v0), and put a GP prior on f(.), with
covariance function (1) and unknown parameters.
Within this probabilistic framework, we can write
y1, . . . , yN+1 ∼ N (0,KN+1), with KN+1pq = Σpq.
If we split y1, . . . , yN+1 into two parts, y =
[y1, . . . , yN ] and y∗, we can write

y, y∗ ∼ N (0,KN+1) (1)

with
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where K is an N×N matrix giving the covariances
between yp and yq, for p, q = 1 . . . N , k(x∗) is an
N × 1 vector giving the covariances between y∗

and yp (kp(x∗) = C(xp,x∗), for p = 1 . . . N), and
κ(x∗) = C(x∗,x∗) is the covariance between the
test output and itself.



For our modelling purposes, we can then divide
this joint probability into a marginal and a con-
ditional part. Given a set of N training data
pairs, {xp, yp}N

p=1, the marginal term gives us the
likelihood of the observed data: y|X ∼ N (0,K),
where y is the N×1 vector of training targets and
X the N ×D matrix of the corresponding train-
ing inputs. We can then estimate the unknown
parameters of the covariance function, as well as
the noise variance v0, via maximisation of the log-
likelihood. The conditional part of (1) provides us
with the predictive distribution of y∗ correspond-
ing to a new given input x∗. We only need to con-
dition the joint distribution on the training data
and the new input x∗, p(y∗|y,X,x∗) = p(y,y∗)

p(y|X) . It
can be shown that this distribution is Gaussian
with mean and variance

µ(x∗) = k(x∗)T K−1 y (3)

σ2(x∗) = κ(x∗) − k(x∗)T K−1 k(x∗)

This way, we can use the predictive mean µ(x∗)
as an estimate for y∗ and the predictive variance
or standard deviation σ(x∗) as the uncertainty or
measure of confidence attached to the estimate.

3. MODELLING OF THE SYSTEM

In this paper the system is assumed to be discrete
with sampling time T , represented as a pseudo-
continuous one with delayed signals. Such system
has same behaviour as the discrete one in the
points of sampling.

Consider the delayed nonlinear system

x(t + T ) = F(x(t),u(t)),

y(t) = G(x(t),u(t)), (4)

which may be reformulated, without loss of gen-
erality, in form denoted as extended local linear
equivalence (ELLE)(Leith and Leithead, 1999)

x(t + T ) = Ax(t) + Bu(t) + f(ρρρ),

y(t) = Cx(t) + Du(t) + g(ρρρ), (5)

where x(t) ∈ Rn, u(t) ∈ Rm and A,B,C,D
are appropriately dimensioned constant matrices,
f(·) and g(·) are nonlinear functions and ρρρ =
ρρρ(x(t),u(t)) ∈ Rq, q ≤ m + n, embodies the
nonlinear dependence of the dynamics on the state
and input with ∇xρρρ, ∇uρρρ constant (Leith and
Leithead, 1999). Differentiating (5) an alternative
representation of the nonlinear system is

ẋ(t) = w(t),

w(t + T ) = A(ρρρ)w(t) + B(ρρρ)u̇(t),

ẏ(t) = C(ρρρ)w(t) + D(ρρρ)u̇(t). (6)

where

A(ρρρ) = A +∇f(ρρρ)∇xρρρ, B(ρρρ) = B +∇f(ρρρ)∇uρρρ,

C(ρρρ) = C +∇g(ρρρ)∇xρρρ, D(ρρρ) = D +∇g(ρρρ)∇uρρρ,

(7)

These are approximated with ααα,βββ,γγγ,δδδ:

ααα≈A(ρρρ) = ∇xx(t + T ) (8)

βββ ≈B(ρρρ) = ∇ux(t + T ) (9)

γγγ ≈C(ρρρ) = ∇xy(t) (10)

δδδ ≈D(ρρρ) = ∇uy(t) (11)

Each of the ααα,βββ,γγγ,δδδ elements is approximated
with its own Gaussian Processes model. The train-
ing data for the GP models are coefficients of
individual linearisations obtained from local linear
models identified in various equilibrium as well as
off-equilibrium regions.

This paper will not focus on details of how the
local models are obtained. More on the identi-
fication of the local models and the associated
issues can be found e.g. in (Murray-Smith and
Johansen, 1997), (Murray-Smith et al., 1999) and
(Johansen et al., 2000) and references in there.
Nevertheless, the identified linear local models
need to be of the same order, must describe cor-
responding region satisfactorily well and must be
located in equilibrium as well as off-equilibrium
points. The off-equilibrium models are necessary
for two reasons:

• they uniquely define the system (Leith and
Leithead, 2002) and

• they provide the data necessary for training
the GP models describing entire operating
region.

It is important to note that a local linear input-
output model only specifies parameters up to
a co-ordinate transformation (Leith and Leit-
head, 2002). In this paper we always use lagged
inputs and outputs as our state co-ordinates for
simplicity but of course other choices are possible.

The FSGP system modelling consist roughly of
two stages. The first stage is the identification
of local linear models in equilibrium and off-
equilibrium points. The results of the first stage
are sets of derivatives of nonlinear function which
are at the same time coefficients of linear local
models.

In the second stage the GP models are learned for
each set of identified coefficients or parameters.
Each set has a functional dependency on the
states and the inputs. GP model can be used as
a relevance detector and via GP model training
necessary regressors, namely the states and the



inputs, to which the parameters are functionally
linked are revealed.

As the local models usually can not be identi-
fied for every point of the operating region the
smoothing property of GP models can be used to
acquire the values of the local model parameters
for the points lying between the points where
linear local models were identified. This blending
of the parameters is in our case realised with
modelling each local model parameter with its
own GP model. The input into GP models is the
vector of regressors, which can be interpreted as
the vector of scheduling variables ρρρ(t). The output
of each GP model is a corresponding most likely
value of the parameter θk and associated variance
var θk, where k denotes k-th parameter from vec-

tor of parameters θθθ =
[
[αij ]

T [βij ]
T [γij ]

T [δij ]
T
]T

.

Variances var θθθt are expressing the confidence in
the predicted values of parameters, which depends
on the amount of information available for the
modelling. The better the region is modelled –
more local models are used – the lower is the
variance.

The realisation of the model is similar to that in
the velocity based linearisation approach (Leith
and Leithead, 1999), where second order time
derivative ẍ(t) is replaced with first order time
derivative of delayed ẋ(t+T ) like in equation (6).

The obtained nonlinear model can be viewed
as a parametric model with probabilistic and
variable parameters θθθ(ρρρ(t)) – FSGP model. Each
parameter depends on the vector of scheduling
variables ρρρ(t), which consists of all states and
inputs or their subset.

4. CONTROL DESIGN

What are the benefits of a FSGP model? Number
of nonlinear identification methods including GP
model identification methods provide models that
can be used only with a model based predictive
control. FSGP model is a parametric model with
probabilistic parameters and can be used for wider
range of control design methods but model based
predictive control.

One possible control design approach is a gain-
scheduling control design. In this case the local
controllers are designed for selected local models
of the process.

Selection of the process local models for control
design depends on the region where closed-loop
dynamics is expected and is in general not the
same as the selection of the local models used
for process modelling. It is sensible to keep the
system in the well modelled region, i.e. where the

variances of the local models’ parameters predic-
tions are small. Parameters of the local controllers
depend on the same scheduling variables as the
associated process local model parameters.

The basic idea of modelling and control design is
illustrated in the next simple example.

5. EXAMPLE

In this section a first order nonlinear system:

y(t + T ) =
y(t)

1 + y2(t)
+ u3(t), (12)

in discrete points identical to (Narendra and
Parthasarathy, 1990) will be used to illustrate
modelling a FSGP model convenient for a control
design.

The operating region of the system, defined with
0 < u < 2.35 and corresponding values of y
in equilibrium 0 < y < 15.7, is divided in two
regions for better illustration of the FSGP model
properties:

• well modelled region defined with 1.25 < u <
2.35 and corresponding 2.3 < y < 13 in
equilibrium and

• badly modelled region, which scoops the rest
of the working region.

Our aim is to model this system with FSGP
model i.e. to model the derivatives of the system
∂y(t+T )

∂y(t) and ∂y(t+T )
∂u(t) with two GP models and use

this model first for multi-step ahead prediction
(simulation) and then control design.

5.1 Modelling

5.1.1. Modelling local model parameters with the
GP model The parameters of the local models
describing the system (12)

θθθ(ρρρ) = [a(ρρρ) b(ρρρ)] (13)

a(ρρρ) =
∂y(t + T )

∂y(t)
=

1− y2(t)
(1 + y2(t))2

(14)

b(ρρρ) =
∂y(t + T )

∂u(t)
= 3u2(t) (15)

depend on scheduling vector ρρρ = [y(t) u(t)]T , but
due to the simplicity of the system the parameter
a depends only on y(t) and the parameter b only
on u(t). This simplifies the modelling of each pa-
rameter as there is no distinction between equilib-
rium and off-equilibrium points in representation
of the training data for the GP model.

Training points for the two GP models describing
the parameters a and b are in general obtained



with the identification of linear local models. Any
algorithm for identification can be used for exam-
ple instrumental variable (IV) algorithm. The true
values of parameters a and b and corresponding
predictions ã and b̃ together with training points
can be seen in Figure 1. We can distinguish be-
tween well and badly modelled regions by observ-
ing the error and the variance of the prediction in
Figure 1.
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Fig. 1. Comparison of the Gaussian process model
output and true value of the system’s pa-
rameter for parameter a (upper figure) and
parameter b (lower figure)

5.1.2. Putting the local models together — blend-
ing the model System described with equation
(12) can be written in a form similar to velocity
based linearisation as in equation (6).

The approximations of the parameters ã(k) and
b̃(k) are predicted using corresponding GP mod-
els.

The resulting model was first validated. The re-
sponse of the system and the FSGP model to
a random input signal is depicted in Figure 2.
Standard deviations associated with each of the
predicted parameters are given in Figure 3.

The crossing between well and badly modelled
regions can be clearly seen from simulation result
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Fig. 2. Responses of dynamic system and its model
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Fig. 3. Standard deviations of parameter predic-
tions ã (upper figure) and parameter predic-
tions b̃ (lower figure)

depicted in Figure 2 as well as from the values of
parameters’ standard deviation in Figure 3.

5.2 Control design

A controller that compensates the process dynam-
ics is designed. Since the process is of the first
order a nonlinear proportional integral controller
is selected. Mean values of predictions ã and b̃
were used in the controller design. The targeted
closed-loop dynamics was of the first order with
predetermined time constant, which is to be uni-
form in the entire operating region. The obtained
closed-loop response is given in Figure 4.

The closed-loop performance can be assessed with
the comparison of obtained response to the speci-
fied reference closed-loop response. It can be seen
from Figure 4 that closed-loop response does not
follow the closed-loop requirements well, when y
decreases below value 2, where the GP models of
linearised parameters exhibit low confidence.



0 20 40 60 80 100 120
0

2

4

6

8

10

Time [sec]

Closed−loop response

set−point
response

0 20 40 60 80 100 120
0

0.05

0.1

σ a

Time [sec]

0 20 40 60 80 100 120
0

0.2

0.4

σ b

Time [sec]

Fig. 4. Closed-loop response of the system con-
trolled by compensator

6. CONCLUSIONS

The paper presents the idea of the Fixed-Structure
Gaussian Process (FSGP) model and its applica-
tion in the control design. FSGP model can be in-
terpreted as a linear model structure with varying
and probabilistic parameters, where GP models
are used to model each of the varying parameters.
The model is applicable for the extended local
linear equivalence class of nonlinear models. The
modelling and the control of such model were
briefly presented and shown on a simple example.

The contributions of this paper is a probabilistic
approach to model nonlinear system for a control
design based on the parametric models. The ad-
vantages of presented approach can be as follows:

• FSGP model provides the measure of con-
fidence in the predicted parameters based
on the training data. Together with informa-
tion of the parameter sensitivity the measure
of confidence can be useful information for
closed-loop system operation.

• FSGP model works well with relatively small
but reasonably selected number of linear lo-
cal models, which form training data for the
GP models of the model parameters.

• The selection of scheduling variables, i.e. in-
puts of the GP models, is based on the rele-
vance detection capability of GP models.

• The mechanisms for blending and scheduling
of local models are joined together.

• FSGP model enables a use of some control
design methods based on the parametric pro-
cess models.
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Ažman, K. and J. Kocijan (2005). Comprising
Prior Knowledge in Dynamic Gaussian Pro-
cess Models. In Proc.: International Confer-
ence on Computer Systems and Technologies

– CompSysTech 2005 (B. Rachev and A. Sm-
rikarov (Ed)), IIIB.2. Varna, Bulgaria.
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