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Abstract— The paper describes the identification of
nonlinear dynamic systems with a Gaussian process prior
model. This approach is an example of a probabilistic,
non-parametric modelling. Gaussian process model can be
considered as the special case of radial basis function network
and as such an alternative to neural networks or fuzzy black
box models. An attractive feature of Gaussian process model
is that the variance, associated with the model response, is
readily obtained. Variance can be seen as uncertainty of the
model and can be used to obtain more accurate multi-step
ahead prediction. The method is demonstrated on laboratory
pilot plant identification.

I. I NTRODUCTION

While there are numerous methods for identification
of linear dynamical systems from measured data (e.g.
[1]), nonlinear systems are more difficult to tackle. This
paper presents the modelling of dynamic systems with
Gaussian processes prior model, which is probabilistic, non-
parametric black-box model and is comparable to neural
networks (NN) or Takagi-Sugeno fuzzy models (TSFM).
The output of Gaussian processes (GP) model is Gaussian
distribution, expressed in terms of mean and variance. Mean
value represents the predicted output and the variance can
be viewed as the measure of confidence in the predicted
output. Obtained variance is important result, which distin-
guishes the GP method from NN or TSFM. It can be used
to improve multi-step ahead prediction, which will be pre-
sented in this paper, and in the control of identified system
[2]. The number of GP model’s parameters which need to
be optimized is much smaller than in the comparable NN or
TSFM. This reduces the problem of optimizing algorithm
getting stuck in local minima. Another potentially useful
attribute of GP model is the possibility to include various
kinds of prior knowledge into the model, e.g. local models
[3], [4], static characteristic, etc.

GP model was first used for regression problem by
O’Hagan [5], but it gained popularity among machine
learning community later through works of Rasmussen
[6] and Neal [7]. Research of a possible use of the GP
model for the identification of dynamical systems was
initiated recently with European project MAC (2000-04),
which resulted in first publications on dynamical system
identification with GP models [8], [9], [10]. The use of the
model with uncertain input, which enables the propagation

of uncertainty through the model, is presented in [11], [12].
GP model was already used to identify some simulated first
order examples, e.g. [8] [9], but to our knowledge never
used to identify dynamical system on measurement data.

The purpose of this paper is to present GP model
identification of two tank pilot plant. Simulation with and
without propagation of the uncertainty is used to validate
the trained GP model.

The paper is organized as follows. In the next section
the problem to be solved is stated. In Section 3 basic
principles of GP modelling are described. Dynamical
system identification with GP model with propagation of
variance through the GP model is outlined. In Section 4
the results of identification of laboratory pilot plant are
presented. In the last section main conclusions are exposed.

II. PROBLEM STATEMENT

Consider the following autoregressive model of aL-th
order dynamical system, where the current outputy(k) ∈ R
depends on delayed outputs and control inputs:

y(k) = f(x(k)) + ε(k) (1)

and ε(t) is a white noise with variancev0. Vector of
regressorsx(k)

x(t) = [y(k − 1), . . . , y(k − L), u(k − 1), . . . , u(k − L)]T

(2)
from operating spaceRD, D = 2L, is composed of the
previous values of outputsy and inputsu up to a given lag
L, where(k − i) denotes corresponding time sample.

We wish to model this dynamic system using a Gaussian
process model and maken-step ahead predictions for
validation. Gaussian processes model provides us with
output value and its uncertainty. Simulation with and
without propagation of uncertainty will be presented and
used to evaluate the identified GP model on laboratory
pilot plant measurement data.



III. I NTRODUCTION TO DYNAMICAL SYSTEMS

IDENTIFICATION WITH GAUSSIAN PROCESSES MODEL

A. Modelling with Gaussian processes

Identification with Gaussian processes method is a sta-
tistical, non-parametric method for identification. In more
detail it is presented for example in [13], [14], [6].

Gaussian process (GP) model fits nicely into Bayesian
modelling framework. The idea behind GP modelling is
to place prior directly over the function values instead of
parameterizing unknown functionf(x). The simplest type
of such prior is Gaussian.

Gaussian process is a Gaussian random function, fully
described by its mean and variance. We can view on
Gaussian process as on a collection of random vari-
ables, which have joint multivariate Gaussian distribution:
f(x1), . . . , f(xn) ∼ N (0,ΣΣΣ). ElementsΣij of covariance
matrix ΣΣΣ are covariances between values of the function
f(xi) andf(xj) and are functions of corresponding argu-
mentsxi andxj : Σij = C(xi,xj).

Any functionC(xi,xj) can be covariance function, pro-
viding it generates nonnegative definitive covariance matrix
ΣΣΣ.

Certain assumptions about the process are made implic-
itly with the selection of covariance function. First such
assumption is stationarity of the process. This results in the
value of covariance functionC(xi,xj) between inputsxi

andxj depending only on their distance and being invariant
to their translation in the input space, see e.g. [15]. Second
assumption is smoothness of the output. This results in the
higher covariance for inputs which are closer together in
the input space. Common choice for covariance function,
representing these assumptions, is:

C(xi,xj) = v exp

[
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2

D∑

d=1

wd(xd
i − xd

j )
2

]
(3)

whereD is length of vectorx andΘΘΘ = [w1, . . . , wD, v]T

are parameters called hyperparameters, as they define prob-
ability distribution of the functions and do not parame-
terize the function itself. Hyperparameterv controls the
magnitude of the covariance and hyperparameterswi are
representing relative importance of each componentxd of
vectorx. Neal showed [7] that GP model with covariance
function (3) is analogous to radial basis neural network
(RBNN) with one hidden layer and infinite number of
hidden units when assuming certain RBNN’s weights dis-
tribution.

Consider system (1) with additive white noise with
variancev0, ε ∼ N (0, v0). The GP prior with covariance
function (3) with unknown hyperparameters is put on space
of functionsf(.). Within this probabilistic framework, we
havey1, . . . , yN ∼ N (0,K) with K = Σ + v0I, whereI
is N ×N identity matrix.

Based on a set ofN training data pairs{xi, yi}N
i=1 we

wish to find the predictive distribution ofy∗ corresponding
to a new given inputx∗. For collection of random variables

(y1, . . . , yN , y∗) we can write:
(

y
y∗

)
∼ N (0,KN+1) (4)

with covariance matrix
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wherey = [y1, . . . , yn]T is N×1 vector of training targets.
We can divide this joint probability into a marginal and a
conditional part. The marginal term gives us the likelihood
of the training data:y|X ∼ N (0,K), whereX the N ×D
matrix of training inputs.

We need to estimate the unknown parameters of the
covariance function (3), as well as the noise variancev0.
This is done via maximization of the log-likelihood

L(ΘΘΘ) = log(p(y|X))

= −1
2

log(| K |)− 1
2
yT K−1y − N

2
log(2π)(6)

with vector of hyperparametersΘΘΘ = [w1 . . . wD, v, v0]T

andN×N training covariance matrixK. The optimization
requires the computation of the derivative ofL with respect
to each of the parameters:

∂L(ΘΘΘ)
∂Θi

= −1
2

trace

(
K−1 ∂K

∂Θi

)
+

1
2
yT K−1 ∂K

∂Θi
K−1y

(7)
Here, it involves the computation of the inverse of the
N ×N covariance matrixK at every iteration, which can
be computationally demanding for largeN . An alternative
method for parameters optimization is to put a prior on the
parameters and compute their posterior probability [6].

Now that the hyperparameters are optimized, we can
obtain prediction of the GP model at the inputx∗. The
conditional part of (4) provides the predictive distribution
of y∗:

p(y∗|y,X,x∗) =
p(y, y∗)
p(y|X)

(8)

It can be shown [14] that this distribution is Gaussian
with mean and variance:

µ(x∗) = k(x∗)T K−1y (9)

σ2(x∗) = k(x∗)− k(x∗)T K−1k(x∗) + v0 (10)

wherek(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is theN × 1
vector of covariances between training inputs and the test
input case andk(x∗) = C(x∗,x∗) is the autocovariance of
the test input.

Vectork(x∗)T K−1 in (9) can be interpreted as a vector
of smoothing terms which weights training outputsy to
make a prediction at the test pointx∗. If the new input is
far away from the data points, the termk(x∗)T K−1 k(x∗)
in (10) will be small, so that the predicted varianceσ2(x∗)
will be large. Regions of the input space, where there are
few data or where the data has high complexity or noise,
are in this way indicated through higher variance.



B. Dynamical system identification

The identification method above was originally used for
identification of static functions, but it can be extended to
model dynamical systems as well [8].

Our task is to model the dynamical system (1) and be
able to maken-step ahead prediction. One way to don-
step ahead prediction is to make iterative one-step ahead
predictions up to desired stepn whilst feeding back the
predicted output.

Two approaches to iterated one-step ahead prediction are
possible using GP model. In the first approach only the
mean values of the predicted output are feed back to input.
Vector of regressorsx(k) at time samplek from (2) for GP
model is composed fromL past predicted outputs andL
past inputs:

x(k) = [ŷ(k− 1), . . . , ŷ(k−L), u(k− 1)), . . . , u(k−L)]T

(11)
whereŷ(k− i) andu(k− i) are past prediction̂y and input
u at time sample(k − i) respectively.

This “naive” approach neglects information about the
uncertainty of the output and is similar to that used in mod-
elling dynamic systems with NNs. The obtained variance is
still a rough indicator of the model’s local one-step ahead
accuracy, but the values of predicted mean and variance are
not correct for then-step ahead prediction.

C. Propagation of the uncertainty through the GP model

In second approach ton-step ahead prediction not only
the mean value of the predicted output is feed back to input
of the GP model, but complete output distribution of the GP
model is feed back instead [16], [12]. This way GP model
not only models dynamical behaviour of the system but also
provides the information about confidence in its prediction.
Two realizations of this approach are possible:

• numerical integration over input distribution, e.g. with
MCMC method and

• analytical solution, where assumption about output
having Gaussian probability distribution, is made [12],
[11].

Latter approach, referred to as “exact” approach, is
depicted in Fig. 1. Output distributionN (m(k), v(k)) with
mean valuem(.) and variancev(.) of the model in time
stepk is presumed to be Gaussian. Note that distribution
in Fig. 1 is denoted withN and notN , as it is Gaussian
only by presumption.

In “exact” approach input to GP model vector of past
outputsxŷ(k) = [ŷ(k− 1), . . . , ŷ(k−L)]T is presented as:

xŷ(k) ∼ N (µµµŷ,ΣΣΣŷ) (12)

where the vector of mean past predictionsµµµŷ is

µµµŷ = [m (xŷ(k − 1)) . . .m (xŷ(k − L))]T (13)

and elementsΣi,j of covariance matrixΣΣΣŷ between past
predicted outputs are

Σi,j =
{

v(xŷ(k − i)) + v0, i = j
cov(ŷ(k − i), ŷ(k − j)) otherwise.

(14)
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Fig. 1. Simulation with repeated one step-ahead prediction of dynamical
model where uncertainty is propagated

The regressorx from (11) is completed with vectorxu =
[u(k− 1)), . . . , u(k−L)]T , whereu(k− i) is the value of
the input at time samplek−i. As they are known precisely,
we can view on each of these values as on distribution with
varianceσ2(u(k − i)) = 0.

Thus the input of the GP modelx, at which we wish to
predict the output, is a normally distributed random variable
with mean vectorµµµx and covariance matrixΣΣΣx:

x ∼ N (µµµx,ΣΣΣx) = N
([

µµµŷ

xu

]
,

[
ΣΣΣŷ 0
0 0

])
(15)

New outputŷ(k) ∼ N (m(x(k)), v(x(k)) + v0) at time
samplek is computed using (16) and (17), see [11], [12]
for details.

m(µµµx,ΣΣΣx) = Ex[µ(x)] (16)

v(µµµx,ΣΣΣx) = Ex[σ2(x)] + Ex[µ(x)2]− (Ex[µ(x)])2 (17)

whereEx[f(x)] =
∫ +∞
−∞ f(x) p(x|µµµx,ΣΣΣx) dx and the ex-

pressions for meanµ(x) and varianceσ(x) are from (9)
and (10) respectively.

Due to space limitation only final expressions for mean
and variance are given, refer to [12] for detailed calcula-
tions. Predicted meanm(.) and predicted variancev(.) at
time samplek for normally distributed random variablex
with mean vectorµµµx and covariance matrixΣΣΣx are:

m(µµµx,ΣΣΣx) =
N∑

i=1

βi C(µµµx,xi) Ccorr1(µµµx,xi) (18)

and

v(µµµx,ΣΣΣx) = v −m(µµµx,ΣΣΣx)2 −

−
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C(µµµx,xi)C(µµµx,xj)Ccorr2(µµµx,xb) (19)

where

Ccorr1(µµµx,xi) =
∣∣ I + W−1ΣΣΣx
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∆−1 = W−1 − (W + ΣΣΣx)−1 (21)

Ccorr2(µµµx,xb) =
∣∣ 2W−1ΣΣΣx + I
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exp
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(23)

andxi andxj are i-th andj-th input regressors with their
meanxb = 1

2 (xi + xj), βββ = K−1y, I is D ×D identity
matrix andW−1 is diagonal matrix of hyperparameters
wi: W−1 = diag[w1, . . . , wD].

IV. I DENTIFICATION OF A TWO TANK SYSTEM

A. Laboratory pilot plant and chosen subsection for iden-
tification

The process scheme of laboratory pilot plant’s subsystem
is presented in Fig. 2. Subsystem consist of two tanks,R1
andR2, connected with flow paths, which serve to supply
liquid from the reservoirR0.

P1

V5

R0

R1 R2LT 2

Fig. 2. Process scheme of chosen subsystem of the plant

Flow path from reservoirR0 to tank R1 has built-in
pumpP1, driven with DC motor with permanent magnet.
The angular speed of the motor is controlled by the analog
controller. The time constant of the angular speed is very
short compared to the time constants of the dynamics of
the levels in the tanks, i.e. we can consider no lag between
the reference speed and the real one.

Flow is generated by varying the angular speed of the
pump P1. The other interesting part is manual valveV 5,
which is positioned on the path from tankR2 to reservoir
R0. It is partly open, so it enables liquid flow from tank
R2 back to reservoirR0. Capacity of the reservoirR0 is
much greater than capacity of the tanks so that its level can
be considered constant during the operation.

Voltage on the motor, which represents the input into the
system, drives the pumpP1. Pump generates flow from
reservoirR0 to tankR1. Liquid flows from tankR1 to tank
R2 and from there back to reservoirR0 through ventilV 5.
The liquid level in tankR2 represents the output of the
system.

B. Operating region, measurements and results

The represented second order system is single-input
single-output system, where voltageU on the DC motor of
pumpP1 is the input and liquid levelh2 in tank R2 is the
output of the system. Static characteristic of the system’s
response is given in Fig. 3. Besides the static nonlinearity,
observed in Fig. 3, the system’s dynamics is nonlinear too.
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Fig. 3. Static characteristic of the chosen subsystem of the plant

Working region is restricted with heighthmax = 60 cen-
timeters of the tanksR1 and R2. The maximum voltage
on P1 was fixed toUmax = 4 Volts with trial and error
method, preventing the liquid levelh1 to reach the top
hmax of the tankR1. Sample timeTs = 10 seconds was
chosen experimentally, so that dynamics of the system was
satisfactory captured.

Identification and validation data for GP model was
obtained with measurements. Pseudo–random binary signal
(PRBS) was used for input, except that the value of the
magnitude of the signal could occupy any value between
Umin = 0.8 and Umax = 4 Volts when changed. Two
different signals were used, one for training of the model
and one for model validation. The signal for training is
depicted in Fig. 4 and the signal for validation in Fig. 5.

The second order model was assumed as the underlying
system is of second order too. Training points were sampled
arbitrary from training signal. 92 training points were used
for training of the GP model. The number of training points
was selected as a tradeoff between quality of prediction
and training time. As this is nonparametric model, where
all training inputs are constituting the model via covariance
matrix K, merely increasing the number of training points
would not necessary substantially improve the prediction of
the model, as is the case in our example.

With the training the following values were gained
for hyperparameters: v = 218, v0 = 0.03, w =
[2.0E− 4, 2.5E− 3, 0.155, 1.28E− 2]T .

The result of the simulation of the GP model without
propagation of variance — the “naive” method — can be
seen in Fig. 6 and the result of simulation with propagation
of the variance — the “exact” method — in Fig. 7. From
Fig. 6 we can deduce, that the mean value of the model’s
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Fig. 4. Training signal for LMGP model of the plant
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Fig. 5. Validation signal for LMGP model of the plant

output corresponds quite well to target. The variance on
the other hand can not be used as the proper measure
of confidence, as it is not taking the uncertainty of the
input into account, which results in too firm confidence
in prediction. That is not the case when “exact” method
is used. The confidence in the prediction loosens as the
uncertainty of previous output is taken into consideration.
This is particulary highlighted in the regions, modelled with
smaller number of data, as can be seen from Fig. 8 in time
interval from 400 to 550 seconds. We can observe, that
during most of the simulation system’s outputy lies within
the 95% measure of confidence interval2σ around the
predicted output of the GP modelŷ: |ŷ(t)− y(t)| < 2σ(t),
see Fig. 8.

Two quality measures [8] were used for results of vali-
dation:

• mean squared error (SE)

SE=
1
N

N∑

i=1
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i (24)
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Fig. 6. Validation of the GP model with simulation – “naive” method
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Fig. 7. Validation of the GP model with simulation – “exact” method

• log-predictive density error (LD) [12]

LD =
1

2N

N∑

i=1

(
log(2π) + log(σ2

i ) +
e2
i

σ2
i

)
(25)

whereei = ŷi − yi is error of model’s prediction andσ2
i

predicted variance of the model ini-th time step.
Their evaluation for both simulation methods is given in

Table I. It can be seen from comparison of SE, that the
mean predicted value does not improve much with the use
of “exact” method. More important is, that the variance can
be used as the measure of confidence when using “exact”
method, which can be seen from comparison of LD values
in Table I and simulation results in Figs. 6, 7 and 8.

TABLE I

VALUES OF QUALITY MEASURES ONGP MODEL SIMULATION RESULTS

method “naive” “exact”

SE 0.2039 0.2019
LD 1.66 0.65
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V. CONCLUSIONS

In this paper the identification of dynamical systems
with GP model is presented and used on two-tank system
example. The identified GP model was validated with
simulation. Two simulation methods were used — “naive”
method without and “exact” method with propagation of
variance.

The main advantage of GP model over NN or fuzzy
models is, that its output is predicted Gaussian distribution
instead of predicted value. Gaussian distribution is defined
with its mean and variance and in terms of GP model we
can use the mean as prediction value and variance as the
measure of confidence in prediction. It was shown that this
uncertainty measure can be effectively used with “exact”
realization to improve simulation results of the GP model.
Second advantage of GP model over neural networks or
fuzzy logic models is the smaller number of parameters
that need to be optimized, as this reduces the problem of
local minima.

Another potential benefit of GP model is possibility to
include prior knowledge in elegant matter. Disadvantage
of the GP model is high computational burden, associated
with training of hyperparameters and propagation of the
uncertainty.

In this paper two-tank system was successfully identified
with nonparametric GP model. Only six hyperparameters of
the model needed to be optimized. The model was validated
with simulation, where gained uncertainty was effectively
used to obtain confidence regions around predicted output.

Ongoing activities include incorporation of prior
knowledge into GP model and improvement of the
algorithms as well as various applications of GP models.
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