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Abstract—The paper describes the identification of of uncertainty through the model, is presented in [11], [12].
nonlinear dynamic systems with a Gaussian process prior GP model was already used to identify some simulated first
model. This approach is an example of a probabilistic, .qer examples, e.g. [8] [9], but to our knowledge never

non-parametric modelling. Gaussian process model can be d to identifv d ical ¢ t dat
considered as the special case of radial basis function network used to identify dynamical system on measurement data.

and as such an alternative to neural networks or fuzzy black The purpose of this paper is to present GP model
box models. An attractive feature of Gaussian process model identification of two tank pilot plant. Simulation with and

is that the variance, associated with the model response, is ithout propagation of the uncertainty is used to validate
readily obtained. Variance can be seen as uncertainty of the the trained GP model

model and can be used to obtain more accurate multi-step
ahead prediction. The method is demonstrated on laboratory The paper is organized as follows. In the next section
pilot plant identification. the problem to be solved is stated. In Section 3 basic
principles of GP modelling are described. Dynamical
system identification with GP model with propagation of
variance through the GP model is outlined. In Section 4
the results of identification of laboratory pilot plant are

While there are numerous methods for identificationyresented. In the last section main conclusions are exposed.
of linear dynamical systems from measured data (e.g.

[1]), nonlinear systems are more difficult to tackle. This

paper presents the modelling of dynamic systems with

Gaussian processes prior model, which is probabilistic, non-

parametric black-box model and is comparable to neural Il. PROBLEM STATEMENT

networks (NN) or Takagi-Sugeno fuzzy models (TSFM). . ) )

The output of Gaussian processes (GP) model is GaussianConsider the following autoregressive model of&h
distribution, expressed in terms of mean and variance. Meaffder dynamical system, where the current ouifly € R
value represents the predicted output and the variance c&fPends on delayed outputs and control inputs:

be viewed as the measure of confidence in the predicted

output. Obtained variance is important result, which distin- y(k) = f(x(k)) + e(k) 1)
guishes the GP method from NN or TSFM. It can be used ) ) ) ) )

to improve multi-step ahead prediction, which will be pre-and €(t) is a white noise with variancey. Vector of
sented in this paper, and in the control of identified systenf€gressors(k)

[2]. The number of GP model’'s parameters which need to

be optimized is much smaller than in the comparable NN or

TSFM. This reduces the problem of optimizing algorithmx(¢) = [y(k — 1),...,y(k — L), u(k — 1),...,u(k — L)]*
getting stuck in local minima. Another potentially useful (2)
attribute of GP model is the possibility to include variousfrom operating spac®R?,D = 2L, is composed of the
kinds of prior knowledge into the model, e.g. local modelsprevious values of outputgand inputsu up to a given lag
[3], [4], static characteristic, etc. L, where(k — i) denotes corresponding time sample.

GP model was first used for regression problem by We wish to model this dynamic system using a Gaussian
O’'Hagan [5], but it gained popularity among machineprocess model and make-step ahead predictions for
learning community later through works of Rasmusservalidation. Gaussian processes model provides us with
[6] and Neal [7]. Research of a possible use of the GPutput value and its uncertainty. Simulation with and
model for the identification of dynamical systems waswithout propagation of uncertainty will be presented and
initiated recently with European project MAC (2000-04), used to evaluate the identified GP model on laboratory
which resulted in first publications on dynamical systempilot plant measurement data.
identification with GP models [8], [9], [10]. The use of the
model with uncertain input, which enables the propagation

I. INTRODUCTION



I1l. I NTRODUCTION TO DYNAMICAL SYSTEMS (y1,---,yn,y") We can write:
IDENTIFICATION WITH GAUSSIAN PROCESSES MODEL v
() ~ oK) @

. . . . with covariance matrix
Identification with Gaussian processes method is a sta-

tistical, non-parametric method for identification. In more

A. Modelling with Gaussian processes

detail it is presented for example in [13], [14], [6]. K k(x)

Gaussian process (GP) model fits nicely into Bayesian Kyt = ()
modelling framework. The idea behind GP modelling is T .
to place prior directly over the function values instead of [k(x ) ] [k(x )]
parameterizing unknown functiofix). The simplest type wherey = [y,...,yn]|7 is N x 1 vector of training targets.
of such prior is Gaussian. We can divide this joint probability into a marginal and a

Gaussian process is a Gaussian random function, fullgonditional part. The marginal term gives us the likelihood
described by its mean and variance. We can view omf the training datay|X ~ N(0,K), whereX the N x D
Gaussian process as on a collection of random varimatrix of training inputs.
ables, which have joint multivariate Gaussian distribution: We need to estimate the unknown parameters of the
f(x1),..., f(xn) ~ N(0,%). ElementsX;; of covariance covariance function (3), as well as the noise variange
matrix ¥ are covariances between values of the functiorThis is done via maximization of the log-likelihood
f(x;) and f(x;) and are functions of corresponding argu-

mentsx; andx;: ¥;; = C(x;, x;). ©) = log(p(yX))

Any function C(x;,x;) can be covariance function, pro- = 1 log(| K |) — lyTK—ly — E log(27)(6)
viding it generates nonnegative definitive covariance matrix 2 2 2
3. with vector of hyperparamete® = [w; ...wp, v, vo]?

Certain assumptions about the process are made impli@nd N x N training covariance matriX. The optimization
ity with the selection of covariance function. First such requires the computation of the derivativedtvith respect
assumption is stationarity of the process. This results in théo each of the parameters:

value of covariance functiof’(x;,x;) between input; oL(O) 1 . 1,0 0K,
andx; depending only on their distance and being invariant ~5g— = —Qtrace(K 6@-) + 5Y K 8@-K y
to their translation in the input space, see e.g. [15]. Second ~ ° ’ o

assumption is smoothness of the output. This results in thegere, it involves the computation of the inverse of the
higher covariance for inputs which are closer together inv x N covariance matri¥K at every iteration, which can
the input space. Common choice for covariance functionpe computationally demanding for largé. An alternative
representing these assumptions, is: method for parameters optimization is to put a prior on the
parameters and compute their posterior probability [6].

b Now that the hyperparameters are optimized, we can

. 1 d d\2 obtain prediction of the GP model at the inpxit. The
Clxinx;) = vexp =5 ;wd(mi - 7j) @) conditional part of (4) provides the predictive distribution
=1 of y*:
where D is length of vectorx and® = [wy,...,wp,v]T (v,5")
are parameters called hyperparameters, as they define prob- p(y*ly, X, x*) = Py, Y (8)
ability distribution of the functions and do not parame- p(yIX)
terize the function itself. Hyperparameter controls the It can be shown [14] that this distribution is Gaussian
magnitude of the covariance and hyperparametersre ~ With mean and variance:
representing relative importance of each cqmpoménpf px*) = k(x)TK ly (9)
vectorx. Neal showed [7] that GP model with covariance 9 y Trr 1 %
o°(x*) = k") -kx")"K k(x")+wvy (10)

function (3) is analogous to radial basis neural network

(RBNN) with one hidden layer and infinite number of wherek(x*) = [C/(x1,x*),...,C(xn,x*)]T is the N x 1

hidden units when assuming certain RBNN's weights disvector of covariances between training inputs and the test

tribution. input case and(x*) = C'(x*,x*) is the autocovariance of
Consider system (1) with additive white noise with the test input.

varianceuy, € ~ N(0,v). The GP prior with covariance  Vectork(x*)” K~ in (9) can be interpreted as a vector

function (3) with unknown hyperparameters is put on spacef smoothing terms which weights training outpytsto

of functions f(.). Within this probabilistic framework, we make a prediction at the test poirt. If the new input is

haveyi,...,yny ~ N(0,K) with K = X + v, whereI  far away from the data points, the telaix*)” K~ k(x*)

is N x N identity matrix. in (10) will be small, so that the predicted variancgx*)
Based on a set oN training data pair{x;,y;}Y., we  will be large. Regions of the input space, where there are

wish to find the predictive distribution af* corresponding few data or where the data has high complexity or noise,

to a new given inpuk*. For collection of random variables are in this way indicated through higher variance.



B. Dynamical system identification ukh
The identification method above was originally used for 7 .
identification of static functions, but it can be extended to — u(k-2) ,
model dynamical systems as well [8]. - Gaussian process Nom(k),v(00)
Our task is to model the dynamical system (1) and be z D)
able to maken-step ahead prediction. One way to de —>
step ahead prediction is to make iterative one-step ahead ’
predictions up to desired step whilst feeding back the
predicted output. r
Two approaches to iterated one-step ahead prediction are Nty vike Sl
possible using GP model. In the first approach only the
mean values of the predicted output are feed back to input. Nemth-2yt-2) 77 |«
Vector of regressors(k) at time samplé: from (2) for GP
model is composed froni past predicted outputs and N kL)L)
past inputs: z

Fig. 1. Simulation with repeated one step-ahead prediction of dynamical
x(k:) = [Q(k — 1), e g(k; — L), u(k‘ — 1))’ . ,u(k; _ L)]T model where uncertainty is propagated
11)
whergg)(k — 1) andu(k.— i) are p_ast predictiop and input The regressox from (11) is completed with vectot, =
u at ime samplgk — <) respectively. , w(k —1)),...,u(k — L)]T, whereu(k — i) is the value of
This “naive” approach neglects information about they, input at time sample—i. As they are known precisely,

uncertainty of the output and is similar to that used in modye can view on each of these values as on distribution with
elling dynamic systems with NNs. The obtained variance i?/arianceo—?(u(k —i) =0.

still a rough indicator of the model's local one-step ahead 11,5 the input of the GP mods, at which we wish to

accuracy, but the values of predicted mean and variance aeqgict the output, is a normally distributed random variable
not correct for then-step ahead prediction. with mean vectop, and covariance matrit,:

¥; 0

P tion of th tainty through the GP | ) )
C. Propagation of the uncertainty through the GP mode XNN(anzx):N<|:My:|’|: o OD (15)

In second approach te-step ahead prediction not only
the mean value of the predicted output is feed back to input New outputg(k) ~ N (m(x(k)),v(x(k)) + vo) at time
of the GP model, but complete output distribution of the GPsamplek is computed using (16) and (17), see [11], [12]
model is feed back instead [16], [12]. This way GP modelor details.
not only models dynamical behaviour of the system but also
provides the information about confidence in its prediction.
Two realizations of this approach are possible: (ks Boe) = E"[MQ(X)] ) ) (16)
« numerical integration over input distribution, e.g. with Uik, Bx) = Bx[o™(x)] + Bx[pe(x)7] = (Bx[p(x)])" (17)
MCMC method and where E[f(x)] = [T f(x) p(x|px, £x) dx and the ex-
« analytical solution, where assumption about outpufressions for meam(x) and variances(x) are from (9)
having Gaussian probability distribution, is made [12],and (10) respectively.
[11]. Due to space limitation only final expressions for mean
Latter approach, referred to as “exact” approach, i@and variance are given, refer to [12] for detailed calcula-
depicted in Fig. 1. Output distributioN (m(k),v(k)) with  tions. Predicted meam(.) and predicted variance(.) at
mean valuem(.) and variancev(.) of the model in time time samplek for normally distributed random variabbe
stepk is presumed to be Gaussian. Note that distributiorwith mean vectop, and covariance matriX, are:
in Fig. 1 is denoted withV and not\/, as it is Gaussian
only by presumption. N
In “exact” approach input to GP model vector of past M (kx;Zx) = Y _ Bi Clhtx, i) Coorrt (i, ;) (18)
outputsx; (k) = [§(k—1),...,9(k—L)]T is presented as: i=1

Xu

and
x(k) ~ N (ng,2g) (12) 0(pxe, D) = v — M, Bxc)? —

where the vector of mean past predictignsis N .
T - Z(Kl] - ﬁzﬂj) C(/,Lx, Xi)c(/"’xa Xj)CCO’I‘T’Q(an Xb) (19)
py = (xg(k = 1) mGg(k-D)T  (13) 55

and elements; ; of covariance matrixZ; between past Wwhere

predicted outputs are Cloorr (B %:) = | T+ W*IEX\_I/Q

_ v(xg(k — 1)) + o, =] ! -
i = { cov(g}?k —i),9(k —Oj)) otherwise. 14 P {2(“" —x) AT e —xq) | (20)



B. Operating region, measurements and results

— — —1
AT =W - (W5, (21) The represented second order system is single-input
single-output system, where voltaffeon the DC motor of
. pump P1 is the input and liquid levehs in tank R2 is the
Ceorra(bx; Xp) = ‘ZW T+ I| output of the system. Static characteristic of the system'’s
1 T A —1 response is given in Fig. 3. Besides the static nonlinearity,
exp {2(”" Xp)T AT Xb)] (22)  Gbserved in Fig. 3, the system’s dynamics is nonlinear too.

1 -1 1 -1 I ch f the ch b f the pl
Statical characteristic of the chosen sul syslemu 1l epam
A=W — =W+, (23) 60 : : ; . T
2 2
andx; andx; arei-th andj-th input regressors with their sl

meanx;, = 3 (x; +x;), 8 = K~ 'y, Iis D x D identity
matrix and W~ is diagonal matrix of hyperparameters
w;: W™ = diaglwy, ..., wp).

40

IV. IDENTIFICATION OF A TWO TANK SYSTEM
A. Laboratory pilot plant and chosen subsection for iden-
tification
The process scheme of laboratory pilot plant’s subsystem
is presented in Fig. 2. Subsystem consist of two tarfis,

101

and R2, connected with flow paths, which serve to supply bs ! 18 2 25 3 35 4 45

voltage U (V)
liquid from the reservoirR0. o
Fig. 3. Static characteristic of the chosen subsystem of the plant
R1 R2
Working region is restricted with heigltt,, ., = 60 cen-
RO timeters of the tankd®1l and R2. The maximum voltage
on P1 was fixed toU,,.,, = 4 Volts with trial and error
method, preventing the liquid levél; to reach the top
hmaz Of the tank R1. Sample timeT; = 10 seconds was
chosen experimentally, so that dynamics of the system was
@ satisfactory captured.

Identification and validation data for GP model was
obtained with measurements. Pseudo—-random binary signal
i (PRBS) was used for input, except that the value of the
magnitude of the signal could occupy any value between
Fig. 2. Process scheme of chosen subsystem of the plant Unin = 0.8 and Uy, = 4 Volts when changed. Two
different signals were used, one for training of the model
Flow path from reservoirR0 to tank R1 has built-in  and one for model validation. The signal for training is
pump P1, driven with DC motor with permanent magnet. depicted in Fig. 4 and the signal for validation in Fig. 5.
The angular speed of the motor is controlled by the analog The second order model was assumed as the underlying
controller. The time constant of the angular speed is vergystem is of second order too. Training points were sampled
short compared to the time constants of the dynamics ddrbitrary from training signal. 92 training points were used
the levels in the tanks, i.e. we can consider no lag betweefor training of the GP model. The number of training points
the reference speed and the real one. was selected as a tradeoff between quality of prediction
Flow is generated by varying the angular speed of thend training time. As this is nonparametric model, where
pump P1. The other interesting part is manual valVé,  all training inputs are constituting the model via covariance
which is positioned on the path from tafk to reservoir matrix K, merely increasing the number of training points
RO. It is partly open, so it enables liquid flow from tank would not necessary substantially improve the prediction of
R2 back to reservoitR0. Capacity of the reservoiR0 is  the model, as is the case in our example.
much greater than capacity of the tanks so that its level can With the training the following values were gained
be considered constant during the operation. for hyperparameters: v = 218, vy = 0.03, w =
Voltage on the motor, which represents the input into thg2.0E — 4, 2.5E — 3, 0.155, 1.28E — 2|7
system, drives the pump’l. Pump generates flow from  The result of the simulation of the GP model without
reservoirR0 to tank R1. Liquid flows from tankR1 to tank  propagation of variance — the “naive” method — can be
R2 and from there back to reservdi0 through ventilV’5.  seen in Fig. 6 and the result of simulation with propagation
The liquid level in tankR2 represents the output of the of the variance — the “exact” method — in Fig. 7. From
system. Fig. 6 we can deduce, that the mean value of the model's




Pilot plant training signal Gp model simulation on validation signal, order=2
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Fig. 4. Training signal for LMGP model of the plant Fig. 6. Validation of the GP model with simulation — “naive” method
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Fig. 5. \Validation signal for LMGP model of the plant Fig. 7. Validation of the GP model with simulation — “exact” method

output corresponds quite well to target. The variance on ¢ log-predictive density error (LD) [12]

the other hand can not be used as the proper measure | XN 02
of confidence, as it is not taking the uncertainty of the LD = — Z (]og(?q‘r) + log(o?) + ;) (25)
input into account, which results in too firm confidence 2N i=1 i

in prediction. That is not the case when “exact” methoqN
is used. The confidence in the prediction loosens as th
uncertainty of previous output is taken into consideration
This is particulary highlighted in the regions, modelled with
smaller number of data, as can be seen from Fig. 8 in tim

heree; = §; — y; is error of model's prediction and?
ﬁredicted variance of the model irth time step.

* Their evaluation for both simulation methods is given in
Table I. It can be seen from comparison of SE, that the
. fhean predicted value does not improve much with the use
mte_rval from 400 t0.550 s_econds. We can o_bser\_/e,_ thatof “exact” method. More important is, that the variance can
during most of the simulation system’s outpulies within

he 950 f fid intendat d th be used as the measure of confidence when using “exact”
the Jo70 measure of confidence lnter around the method, which can be seen from comparison of LD values
predicted output of the GP mod#! |§(t) — y(¢)| < 20(¢),

. in Table | and simulation results in Figs. 6, 7 and 8.
see Fig. 8.
Two quality measures [8] were used for results of vali- TABLE |
dation: VALUES OF QUALITY MEASURES ONGP MODEL SIMULATION RESULTS
o mean squared error (SE) e sthod T have™exact
LN SE 0.2039 0.2019
=1

and



Prediction error of the model and 95% confidence zone
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Fig. 8. Absolute error of model with propagation compared to 95%[4]
confidence values of “naive” and “exact” method [5]
V. CONCLUSIONS [6]

In this paper the identification of dynamical systems
with GP model is presented and used on two-tank systelfi]
example. The identified GP model was validated With[8]
simulation. Two simulation methods were used — “naive”
method without and “exact” method with propagation of
variance. (9]

The main advantage of GP model over NN or fuzzy
models is, that its output is predicted Gaussian distribution
instead of predicted value. Gaussian distribution is defined

with its mean and variance and in terms of GP model we;q;

can use the mean as prediction value and variance as the

measure of confidence in prediction. It was shown that thifll]

uncertainty measure can be effectively used with “exact
realization to improve simulation results of the GP model.
Second advantage of GP model over neural networks or
fuzzy logic models is the smaller number of parameters

that need to be optimized, as this reduces the problem ¢f2]

local minima.

Another potential benefit of GP model is possibility to 13

include prior knowledge in elegant matter. Disadvantage
of the GP model is high computational burden, associate
with training of hyperparameters and propagation of th
uncertainty.

In this paper two-tank system was successfully identifie
with nonparametric GP model. Only six hyperparameters o
the model needed to be optimized. The model was validated
with simulation, where gained uncertainty was effectively
used to obtain confidence regions around predicted output.

Ongoing activities include incorporation of prior
knowledge into GP model and improvement of the
algorithms as well as various applications of GP models.

4]
(15]

6]
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