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Povzetek

Modeliranje speleogeneze na prehodu iz toka pod tlakom v tok s prosto

gladino

V raziskavi smo se osredotocili na razvoj kraskih kanalov in mrez kanalov v ka-
snejsih stopnjah, ko je tok vode v njih turbulenten in ima prosto gladino. Do zdaj
je z numeri¢nim modeliranjem niso preucevali, saj je za modeliranje zahtevnejsa
od zgodnejsih stopenj, ko so kraski kanali Se povsem zaliti. Da bi podrobneje pre-
ucili konceptualne modele te stopnje speleogeneze, smo razvili racunske pristope,

v okviru katerih lahko opisemo tudi tok s prosto gladino.

Za izracun vodnega toka in delno za izracun advekcijskega transporta smo
uporabili odprtokodni programski paket EPA-SWMM. Sklopili smo ga z nasimi
programi, ki so izracunali hitrosti topljenja in spremembe v presekih kanalov za-
radi topljenja. Pri izracunu topljenja smo upostevali tako kinetiko reakcije na
povrsini kamnine kakor omejeno hitrost transporta topljenca s povrsine. Mo-
delirali smo razvoj precnih profilov posameznih kanalov in razvoj mrez okroglih
kanalov kot modelov vodonosnikov. Da smo raziskali mozne ucinke spremenlji-
vega pretoka, smo razvoj preucevanih objektov racunali tako ob nespremenljivem

dotoku kakor upostevaje prehodne pojave ob spremembah dotoka.

Modelirani razvoj prec¢nih profilov posameznih kanalov se ujema z nasimi pri-
cakovanji in s primeri rovov, ki jih poznamo iz narave. Razvoj dvodimenzionalnih
mrez kanalov smo uporabili za razlago poloznih za vodo prepustnih plasti in za
opis navpi¢nih prerezov vodonosnikov. Vecina rezultatov spominja na rezultate
predhodnih modelov, ki proste gladine niso obravnavali. Opazili smo nekaj novih
mehanizmov, ki odlocijo o tem, kateri izmed kanalov rastejo naprej, ko se rast
ostalih ustavi. Na navpicnih mrezah smo razvoj vadoznih kanalov in vpliv spre-
memb v hidravlicnem potencialu na speleogenezo obravnavali natancneje, kakor

so to zmogli predhodni modeli.

Na osnovi dobljenih rezultatov zakljucujemo, da je speleogenezo ob pogojih

toka s prosto gladino in ob spremenljivem dotoku s prehodnimi pojavi pri trenu-



tnem stanju tehnike mozno modelirati. Modeli ne napovedujejo izrazitega vpliva
prehodnih pojavov na speleogenezo. Rezultati modeliranja mrez kraskih kanalov
vecinoma potrjujejo rezultate prejsnjih modelov, ki toka s prosto gladino niso
pravilno upostevali. Podrobno napovedovanje precnih profilov je novost, saj brez
modeliranja proste gladine in njene lege ne bi bilo mogoce. Mnogi izmed rezulta-
tov kazejo na to, da so za speleogenezo pomembni sedimenti, ki jih nasi modeli

ne obravnavajo.

Kljucne besede: kraski vodonosnik, speleogeneza, prosta gladina, nu-

meri¢no modeliranje



Summary

Modelling speleogenesis in transition from pressurised to free surface

flow

The focus of this study is the genesis of individual karst conduits and conduit
networks during the later stages of their evolution when turbulent flow is fully
developed and conduits switch from pressurised to free-surface flow. This stage of
cave formation had not been modelled numerically in large part because it is more
demanding to simulate than earlier stages when flow is still pressurised. In order
to investigate conceptual models of this stage of speleogenesis more advanced

numerical techniques were developed.

To calculate water flow and solute transport, an available open-source program
named EPA-SWMM was used. It was coupled to our own code which calculated
dissolution rates and corresponding geometrical changes of the karst conduits.
Both surface reaction and diffusion transport of solute away from the conduit wall
were taken into account. The model was applied to calculate both the evolution
of the cross section of single conduits and the evolution of conduit networks.
To explore the potential effects of variable flow conditions, which have not been
considered in previous numerical models of speleogenesis, simulations were run

with constant recharge as well as with transient recharge.

The cross-sections of single conduits predicted by the model fit our expecta-
tions and the examples known from nature. Simulations of the evolution of two-
dimensional networks of conduits were used to represent both low dip aquifers and
vertical cross-sections through aquifers. Many of the results were similar to the
predictions of earlier models that do not account for free surface flow. However,
new mechanisms that determine the subset of conduits that is enlarged the most
were found. In vertical networks, evolution of drawdown vadose passages and
the influence of changes in hydraulic head on speleogenesis were also investigated

more accurately than in earlier models.

It was concluded that the state of the art facilitates modelling of speleogenesis



under free surface flow conditions and transient recharge. No strong influence of
transients was observed, and the modelling of conduit networks mostly confirmed
results of earlier models neglecting free surface flow. The modelling framework
developed here allows much more detailed exploration of the evolution of conduit
shapes than with previous models, since the level of the free surface is tracked
and full conduit cross-sections are evolved. Many results suggest that sediments,
which were not included in our models, also have an important influence on

speleogenesis.

Keywords: karst aquifer, speleogenesis, free-surface flow, numerical

modeling
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Chapter 1
Introduction

Karst is an area where the surface morphology is controlled by the dissolution
of rock [12]. Dissolution of rock by groundwater also affects the characteristics
and development of the underlying aquifer [13]. The initial discontinuities, such
as fractures, faults and bedding planes, are enlarged by dissolution and the local
hydraulic conductivities are increased, which can result in larger flow densities
and higher dissolution rates [28]. As a result, karst aquifers are characterised by a
network of solution conduits, which often drain 99 % or more of the groundwater
flow [38]. This makes karst aquifers highly heterogeneous and anisotropic [13].
In general, the locations of the conduits are often difficult to determine, and
water can flow in surprising ways. Therefore, suitable characterisation of aquifer
properties is important for its efficient protection and management.

Understanding a karst aquifer is in our opinion strongly linked to the com-
prehension of its development. In practice it is not possible to know the exact
locations of all the voids in a given moment. From the field data that are available
we can infer more information if we include the time dimension and the processes
responsible for development of the voids.

The ideas on karst aquifers and their formation are formalised as conceptual
models. A contemporary example is the Four State Model, which postulates
that the state of the aquifer is determined by density, penetrability and linkage
of fractures and bedding planes, and orientation of hydraulic gradients [13]. The
validity of conceptual models is challenged by field observations and process-based
numerical models, which have in the last 20 years shown to be an extremely
valuable tool for the purpose. Numerical models are based on rate laws and
conservation equations [15]. They couple water flow, transport of dissolved species
and dissolution of the rock.

Numerical modelling of the development of karst aquifers begins with one-
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dimensional models of evolution of a single fracture by Dreybrodt and Palmer |8,
32, 6]. The evolution of a fracture is investigated more thoroughly with advanced
models by Hanna [19]. The 1D models are sufficient to investigate the dissolution
length scales. The importance of non-linearities in dissolution rate laws and
feedback loops can also be investigated through them [10]. At the same time,
these models are the basic elements of more complex ones [10].

Evolution of two-dimensional fracture networks is researched by several au-
thors. Models increase in complexity of their structure and boundary conditions
starting from works by Groves and Howard [18]. Siemers [37] deals with more com-
plex 2D networks, while Kaufmann & Braun [24, 23] and Liedl [30] introduced
so-called double porosity models, where flows through rock matrix and through
discrete conduits are coupled. Apart from the processes inherited from single
fracture models, 2D models enable one to investigate competition of different
conduits and the influence of mixing corrosion [10].

Numerical models of unconfined aquifers, with falling water table, were also
developed, of a fracture network by Gabrovsek and Dreybrodt [17] and of double
porosity by Kaufmann [22]. The models of unconfined aquifers offer insight into
different conceptual models and have also been used to describe regional case
examples [26].

Annable and Sudicky [1] and Kaufmann, Romanov and Hiller [27] also devel-
oped three-dimensional double porosity models. Both 2D and 3D models have
been used to investigate intensified karstification around dam sites [10].

All existing models except for Annable and Sudicky [1] only simulate speleo-
genesis, formation of karst conduits, under full pipe flow conditions. Later phases
of speleognesis comprising of phreatic-vadose transition and vadose development
of conduits in turbulent flow conditions have mostly not been considered. How-
ever, a major part of dry accessible caves are former conduits that did experience
phreatic vadose transition which could influence their geometries.

Therefore it is a matter of utmost importance in speleogenetic modelling to
develop models describing speleogenesis in epiphreatic and vadose settings. The

appropriate model needs to account for:

e free water surface and pressurised turbulent flow in individual conduits and

conduit networks in arbitrary geometry;
e transient recharge conditions;
e dissolution of rock walls and transport of dissolved species;

e temporal development of conduit geometry.

11



A model meeting these criteria can be applied to:
e study the profile evolution in single conduits;
e study the conduit network evolution in various settings;

e determine the importance of later stages of speleogenesis on the distribution

of conduits in various settings;

We start building up a numerical model on the assumption that dissolution
and transport do not significantly influence the flow which can thus be calculated
separately. The model is assembled from separate parts; a flow module and a
module including dissolution, geometry development and transport. The latter is
disassembled further into two parts. One includes the processes happening at the
rock surface or near it — dissolution and short-range transport of the dissolved
species by diffusion, and it also introduces changes in geometry as a result of
dissolution. The other is advection, transport of the dissolved species with the
bulk of the flow. The flow part only informs the other two and does not depend
on any information from them. Dissolution and advection have to interact with
each other only through the bulk concentrations and dissolution rates.

In this thesis, we concentrate on two main topics: evolution of single conduits
and evolution of conduit networks. In both topics, the numerical models follow

the same strategy. In each cycle of the calculation:
1. the water flow is calculated using SWMM;
2. the dissolution rates are calculated;
3. the new geometry after one timestep of dissolution is calculated;

4. the solute concentrations resulting from the dissolution and the advection

by the water flow are calculated;

5. the procedure returns to the step 1 and continues from the new geometry

and concentration field

(cf. Fig. 4.2).
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Chapter 2
Groundwater flow in karst aquifer

The general equations of fluid flow are valid for the whole karst aquifer but
solving them would be highly demanding. Through some approximations, they
can be transformed into simplified versions that are more convenient to use.
The features of karst aquifers are diverse and support different types of flow,
so different features are described by different approximations and equations.
Both the general and the more specific equations are introduced in Sec. 2.1.

Water can flow from karst conduits into the pores of the rock or vice versa. In
Sec. 2.2, the importance of the exchange of water between conduits and rock ma-
trix for evolution of the conduits is investigated. It turns out that such exchange
can be neglected from a certain stage in conduit development on.

To get insight into evolution of conduits, solutions of the equations of flow are

needed. Sec. 2.3 deals with the method used to solve these equations in conduits.

2.1 Equations

Fluid flow is in general described by continuity and Navier-Stokes equations [2],

dp
§+V-(pw) =0 (2.1)
and -
pD—VtV = uVw — Vp + pg, (2.2)

valid also in karst aquifers. Here, p stands for fluid density, ¢ is time, w is velocity,

1 is dynamic viscosity, p is pressure, g is acceleration of gravity and operator V

9 9 Q)
oz’ Jy’ 0z/°

The defining feature of karst aquifers is the solubility of the medium in water.

stands for (

The water that is flowing through the voids in the medium (interstitial pores,
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fissures, cave passages, etc.) is enlarging them by dissolution and thus increasing
the local hydraulic conductivity. Typically the enlarged conductivities result in
larger flow densities and in higher dissolution rates. The heterogeneity of the
aquifer with respect to water flow regimes increases due to this positive feedback
loop [28]. Because of the strong heterogeneity of the aquifer and an unknown exact
shape of the voids in the medium, exact solutions of the governing equations
are impossible to obtain. However, in different parts of the aquifer, different

approximations and simplifications are valid.

2.1.1 Fluid flow in porous medium

Laminar flow through a porous medium is described by Darcy’s law. In the case

of homogeneous isotropic medium it is [3]
q=—-KVg, (2.3)

where q is flux, K is hydraulic conductivity and ¢ the hydraulic head. In

anisotropic media, the hydraulic conductivity is a tensor quantity.

2.1.2 Laminar flow through a fissure

Laminar flow through a conduit is described by Hagen-Poisseuille equation. In
aquifers, typical conduits transmitting flow in laminar fashion are fissures, their
cross-sections are long in one and narrow in the other dimension. The form of

the equation for such fissures is [11]

AH
° " B
R 12M/L dz
T o o @ (@) b(x) M (x)
M = 1-0,62 (2.4)

b

where () is the flow rate, AH is the loss of hydraulic head, L the fissure length,
a the fissure aperture width, b the fissure width and ¢ acceleration of gravity.
Ryp is the flow resistance and M stands for an empirical correction term for the

geometry.
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2.1.3 Turbulent flow through a conduit

Pressurised conduit

For turbulent flow in a conduit, several empirical relations relating friction loss
to flow velocity, hydraulic diameter and a friction coefficient are available. One
of them is the Darcy-Weisbach formula [7],

fv?

S, —
f 2Dhg7

(2.5)

where St is friction slope (head loss per unit length), V' is flow velocity (equal to
the flow rate @ divided by the cross-sectional area A), Dy, is hydraulic diameter
of the conduit and f is friction factor. For smooth circular pipes an approximate

relation for f is Colebrook equation [7]

% = 2log (Nne/) =038, (2.6)

Reynolds number Ng, is defined as

_ PV Dy
L

NRe

(2.7)

and is a measure of the ratio of inertial forces to viscous forces.
Apart from the Darcy-Weisbach formula, one can use the Hazen-Williams
formula [35],
V = CSpt RO, (2.8)

where C' is roughness coefficient and R is hydraulic radius.

The Manning equation [14] reads

n2 V2

R

(2.9)

where n is Manning roughness coefficient, is typically used for partially filled
conduits, while it can also be used for pressurised conduits.

Qualitatively all three formulae are quite similar:
e according to Manning equation, V o< S} /2 R2/3 [14];
e according to Hazen-Williams formula, V' oc SP-54R%63 [35];

e according to Darcy-Weisbach formula, V' Sfl /2R1/2 =12, where f has a
logarithmic dependence on S¢ and R [7].
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Free-surface flow in a conduit

The complete one-dimensional equations of open-channel flow are called Saint
Venant equations [5]. They are obtained by integrating Navier-Stokes equation

in the other two dimensions. Their form is [34]

04 0Q
o4 | 9 _ 2.1
o T =0 (2.10)
00 0Q*/A  OH B
o g T 9AG, H9AS + gA = 0. (2.11)

Here, x is distance along the conduit, ¢ is time, A is cross-sectional area, ()
is flow rate, H is the hydraulic head of water in the conduit (elevation head plus
any possible pressure head) and hy, is the local energy loss per unit length of
conduit. Both equations assume that there are no lateral inflows and that water
is incompressible. Eq. 2.10 is the continuity equation. Eq. 2.11 is the momentum
equation for x dimension, which means that water velocity in directions other
than x is not taken into account. Water pressure is assumed to be hydrostatic so
that H depends only on z [5]. For a known cross-sectional geometry, the area A
is a known function of flow depth which in turn can be obtained from the head
H. Thus the dependent variables in these equations are flow rate () and head H,
which are functions of distance x and time t¢.

The friction slope S¢ can be obtained from the Manning equation.

2.2 Exchange between conduits and porous me-
dia

While most of the flow in karst aquifers occurs through conduits, the porous
matrix is supposedly important for water storage [38]. In the transient flow regime,
this storage influences speleogenesis, while the magnitude of this influence is not
self-evident. For this reason, exchange of water between a conduit and porous
medium has been investigated by us thoroughly. A novel numerical method has
been used and interesting results have been obtained, the results are published
in a peer reviewed journal and the article can be found in the Appendix A.

For mature limestones, K would be around 107% m/s and ® would be a few
percent. The dimensionless examples from the article correspond to our models
for [y around 1 m. At these parameters, the dimensionless time t would equal 1

at t ~ 107 s. Looking at the results for V it means that time constant for water
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exchange 7 would be around 10° s. The exchanged volume at such timescales
would be V®I2 for every meter of the conduit or around 1000 m? for examples in
Sec. 4.1 so the exchange flow would be around 107 m3/s, negligible compared to
the flow along the conduit.

As the exchange is negligible compared to the flow along the conduit, it is

neglected in the models.

2.3 Modelling of flow

The flow in later stages of speleogenesis is passing mostly through conduits so
the modelling of the flow has to account for turbulent flow along them. It has to
deal with both pressurised and free surface flow. Calculating the flow through a
network of conduits under these assumptions is a major task. However, it is of
interest also in fields different from modelling speleogenesis, so software for such
calculations is available. To avoid duplicating work we decided to use one of such
programs, EPA Storm Water Management Model — version 5.0 (EPA-SWMM). It
is a free, open source [35] and well documented program intended for calculating
drainage systems.

In our modelling, EPA-SWMM is used to solve Saint Venant equations, Eq. 2.10
and 2.11, while the friction slope S; is obtained from Manning equation, Eq. 2.9
[34]. From the momentum equation, Eq. 2.11, the inertial terms, the first two
terms, are dropped unless noted otherwise [35]. Saint Venant equations are also
used for pressurised conduits. It is done using a Preissmann slot, that is with a
narrow wedge of additional flow area added to the top of any pressurised conduit
in order to artificially keep a free surface [35] as shown in Fig. 2.1. For calculating
friction losses, Manning equation is used for partially filled as well as pressurised
conduits.

EPA-SWMM conceptualizes a drainage system as a series of water and mate-
rial flows between several major environmental compartments: the Atmosphere
compartment, the Land Surface compartment, the Groundwater compartment
and the Transport compartment [35]. In the presented models, only the Trans-
port compartment, meant to represent a sewer network, is used. It is presented
schematically in Fig. 2.2. The components of the Transport compartment are
modelled with Node and Link objects [35].

Of the Node objects, Junctions and Outfalls are used. Junctions are best
depicted as manholes to which Links are connected. The parameters describing

them that are interesting in our case are invert elevation, maximum depth and

17



/ Preissmann slot

/ free surface in the slot

free surface in

/ the conduit

/ the conduit

Figure 2.1: The concept of the Preismann slot. A cross-section of a circular
conduit with an additional narrow slot at the top is shown. When the conduit
is not pressurised the slot has no influence, while when it is pressurised, the
liquid can rise in the slot and keep a free surface so Saint Venant equations
can still be used.
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Figure 2.2: The elements of EPA-SWMM that are used in this work.
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initial depth. If the head at a Junction would exceed the sum of invert elevation
and maximum depth, excess water is lost from the system as if lowing out of the
manhole. In modelling speleogenesis, the feature is used to limit the heads in the
conduits the way they are limited by the presence of the surface. Outfall nodes
define the final downstream boundaries of the system [35]. Their invert elevations
set the outflow boundary conditions.

The Link objects used in the presented simulations are Conduits. They repre-
sent pipes connecting different Node objects. The main parameters determining
them are their length and inlet and outlet offsets - elevations of their lower edge
above the invert of relevant Node. The offsets are important because there can-
not be any flow from a Junction into adjoining Conduit if its lower edge is above
the water table, regardless of the hydraulic head at the other end of the conduit
(Fig. 2.3). Great flexibility is also offered in determining Conduits’ cross-section
geometries. In the presented examples, circular and custom cross-sections are
used. Circular cross-section is described by its diameter, while for custom cross-
section a Shape Curve object and full height parameter are used to describe it.
Shape Curve is described by a list of widths at given depths, where both are nor-
malised with respect to full depth [35]. In our models, widths at 200 equidistant

depths were used for each Shape Curve.

Junction

11—

Conduits

Figure 2.3: Influence of inlet offset on discharge in a SWMM Conduit. A side
view of a general SWMM Junction with some adjoining Conduits is shown.
As the water level in the Junction is below the Conduits 2 and 3, they do not
drain any water from it regardless of the elevation and hydraulic head at the
other ends of these conduits.

Of other non-visual objects, in the simulations Inflows are important. They

supply water or pollutants to chosen Junctions. Water Inflows are used for

20



recharge while pollutant Inflows enable calculating advection.

For data exchange between EPA-SWMM and our code, files are used. After an
EPA-SWMM run, EPA-SWMM Input and Output files are opened by our code.
On their basis, dissolution is calculated, the resulting changes are introduced into
Input file and EPA-SWMM is called again to start a new cycle. The EPA-SWMM
calculations in the new cycle start from the state in the end of the previous cycle
which is saved into EPA-SWMM Hotstart file that is not touched by our code.
To produce the final results, archived Input and Output files from every cycle are

used.
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Chapter 3

Dissolution kinetics in karst

aquifers

The chapter addresses the factors influencing rates of dissolution and acting near
the rock surface. One of them is chemical kinetics of dissolution which determines
mass transport from solid to liquid phase as a function of water chemistry at the
surface. The other one is transport of products of dissolution away from the
surface and of any reactants toward it. On small scale it is facilitated through

molecular diffusion even in turbulent flows.

Depending on lithology and flow conditions, the influence of either one of
these steps can be so strong that the other one can be neglected, that is, taken
to occur instantaneously. It is also possible that both processes impose similar
limits on dissolution rates and both have to be taken into account. In our models,

all three possibilities are encountered.

Both theoretical reasoning and most of experimental data show that disso-
lution kinetics follows a linear law, dissolution rate ought to be proportional to
undersaturation of the bulk of the solution. Close to saturation, measured disso-
lution rates depart from linear law and the effect is important in early stages of

speleogenesis [11]. In this work, only linear kinetics is modelled.

3.1 Dissolution rate law in turbulent flow

In the case of linear kinetics, dissolution rate is proportional to the undersatura-
tion,
V=0 (Ceq — Cb); (3.1)
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where v is dissolution rate, ceq is equilibrium volume concentration, ¢, is concen-
tration in the solution far away from the rock surface, and « is a proportionality
coefficient. To calculate dissolution in turbulent flow, a diffusion boundary layer
model is applied. The flow is presumed to consist of two parts, the bulk and the
diffusion boundary layer [9]. The bulk is the central part, it is well mixed and
the concentration of the solute in it is uniform and equals bulk concentration ¢j,.
Along the walls there is the diffusion boundary layer in which the only mechanism

transporting the dissolved ions is diffusion (Fig. 3.1).

IED!

rock turbulent core

Ceq Ch

3 \\w \)_

diffusion boundary layer

Figure 3.1: The film model adapted from [9]. coq denotes concentration of
ions at the rock surface and ¢, concentration in the bulk of the solution. €
denotes the thickness of the diffusion boundary layer.

Dissolution rates are controlled by the reaction at the rock surface, which in
the case of linear kinetics is described as vy = as(ceq — ¢s), and transport rates
through the diffusion boundary layer vp = ap(cs — ¢p). ¢ is concentration of the
solute at the mineral surface. Both ag and ap are rate coefficients. After steady-
state concentration profiles establish themselves, no storage of solvent is going
on in the boundary layer so both expressions can be equated and ¢4 is obtained.
By introducing it into either expression, one gets mixed surface-transport rate
coefficient in Eq. 3.1:

o= % (3.2)

In the case of some evaporites we expect that as > ap, so a = ap, while

in the case of carbonates the opposite limit, o & «, is possible. Note that this

model quite adequately describes dissolution in evaporites, while in the case of
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carbonates the situation is more complex due to chemical reactions involving COq

that are happening inside the aqueous phase [9, 25].

3.2 Rate coefficients

The surface rate coefficient ag at a particular temperature is a constant. For
limestone it is around 2 - 10~"m/s as derived from parameters given in [11].

For calculating the transport rate coefficient ap, the diffusion boundary layer
model is used. It assumes a diffusion boundary layer of thickness € at the rock
surface where the only mechanism perpetuating mass transfer is molecular dif-
fusion. In the bulk, the region outside of this layer, eddy diffusivity is so high
that the concentration of all species is considered to be uniform (see Fig. 3.1) [9].
Thus ap = D/e, where D is diffusion coefficient.

The thickness of the diffusion boundary layer € is proportional to the thickness

of viscous sublayer h: [9]

e=h-ScV3, Sc= %, (3.3)

where Sc is Schmidt number and v is kinematic viscosity. Kinematic viscosity is

defined as v = p/p, where p is dynamic viscosity and p is density.

The thickness of pure viscous sublayer over a flat wall is [36]

h=5—, (3.4)

Ur

where h stands for the thickness of viscous sublayer, v stands for kinematic vis-

cosity and wu., is friction velocity,

U, = s (3.5)

7., is shear stress and p is density. The shear stress can be expressed from friction
slope St
A
T = pgSip5 = pgSiR. (3.6)

P is wetted perimeter and the cross-sectional area A is the product of hydraulic
radius R and the wetted perimeter P [14]. From Eq. 3.4, 3.5 and 3.6 it follows

ok
PV 9SiR’
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where 4 is dynamic viscosity.

When h is known, € is calculated according to Eq. 3.3 and ap is determined. A
method for calculating A from the results of EPA-SWMM water flow calculations

is thus needed.

The factor /SR entering Eq. 3.7 can be expressed from Manning equation
(Eq. 2.9) as

VSR = %. (3.8)

If the shape of the conduit is held constant, the hydraulic radius R scales with
VA. For ordinary geometries, R ~ %\/Z As the numerical factor is of small

importance, this relation is used in Eq. 3.8 and by introducing it into Eq. 3.7 one

gets:
u A2
h=416—— ) 3.9
If h is expressed with V instead of A, the equation becomes
4.16p QY12
pny/g V13
and according to Eq. 3.3
4.16Sc™ 3 QY12
€= (3.11)

NG V1s/12°

For water, p is approximately 1072 Ns/m? and p = 10° kg/m?® [29]. The
acceleration of gravity ¢ is approximately 9.8 m/s? [29]. Diffusion coefficient, of
table salt is strongly dependent on temperature and is around 1079 m?/s for the
relevant temperatures [33]. Manning roughness coefficient n for smooth pipes is
around 0.01 [35]. These values are used, from them it follows Sc™'/3 = 0.1,

The typical obtained values for € are on the order of 107° m. For Q = 10 m?3/s
and V = 0.1 m/s, ¢ = 1.95-107* m, and for Q = 0.1 m3/s and V = 10 m/s,
€=9.05-10"" m.

3.3 Evaporites

The reaction of dissolution at the surface of table salt is fast so as > ap and

approximately [21]

D
U= ap(Ceq — Cp) = ?(ceq — Cp). (3.12)
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In the case of gypsum, the dissolution reaction is slower so the dissolution rate
may be controlled both by dissolution itself and diffusion [21]. As the salt case is
the limiting case, it is investigated more into details by either using Eq. 3.12 or
using a high value of 1 m/s for a5 in Eq. 3.2 so that it is possible to use the same

computer code as for calculating the mixed dissolution cases.

3.4 Carbonates

The dissolution rates of calcite are determined by three rate-controlling processes
[25]:

1. the kinetics of dissolution at the mineral surface;

2. mass transport by diffusion of the dissolved material away from the surface

and of the reactants toward it;
3. conversion of COy into HY and HCOj3 .

In the literature, there are some doubts in determining which step is the rate-
limiting one under which conditions [4, 9]. The dependence of surface reaction rate
on the water chemistry is also not fully understood. The relation most commonly
used is PWP equation [25] which is empirical fit of many measurement points
valid in a very broad range of dissolved species concentrations. Unfortunately,
the equation is in disagreement with dissolution mechanism as it contains only
one backward term [25]. The precipitation of calcite consists of three different
processes and there should be one term describing each one of them. As the
emphasis of the work is on the influence of hydraulic conditions, we are looking
for the simplest sufficient dissolution model so calculations of the reactions in the

dissolved phase are beyond the scope. What we have is:
1. the surface reaction rate that is not well understood;
2. the diffusion that is the same as in the case of evaporites;
3. the reactions in the dissolved phase that are beyond the scope.

In the modelling, the step 1 is approximated by a linear dissolution law. As
it is the opposite limit to the salt cases, in some of the models the kinetics
of dissolution at the mineral surface is taken to be the rate limiting step, so
v = as(Ceq — ¢p). In particular cases, even ¢, is neglected so that dissolution rate

is constant. A more realistic model taking both surface reaction rate and diffusion
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into account is also used. In it, ap is calculated just as in the case of evaporites
and is combined with ag according to Eq. 3.2, while a4 is a free parameter of the

model. In these cases, the dissolution rate coefficients from [11] are used.
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Chapter 4

Evolution of single conduits

4.1 Omne conduit under constant recharge

In the following cases, evolution of a 30 m long conduit is modelled. Initially
it has constant circular cross-section with 4 cm diameter. Along the first 15 m,
it uniformly rises for 0.84 m, then it descends again to the initial level. It is
modelled as a series of 2 m long horizontal sections, each represented by an
EPA-SWMM Conduit object with custom cross-section connecting consecutive
Junctions (Fig. 4.1). In every cycle of the program flow, water levels and flows
are calculated, dissolution is calculated, and conduit profile is modified according
to dissolution (Fig. 4.2).

Advection and dissolution are calculated under steady-state flow assumption.
After each change of the cross-sections, the flow at constant recharge is calculated
for a long enough time to stabilise. Steady-state dissolution rates and solute
concentrations are then calculated. From the dissolution rates, the cross-sections

at the end of the timestep are calculated.

4.1.1 Numerical example

Numerical implementation

Build 5.0.015 of EPA-SWMM is used. The procedures for dissolution and advec-
tion are written in C++ language and compiled with g++ 4.6.1 compiler. The
OS wused is Ubuntu 11.10 with Linux kernel 3.0.0.12-generic, 2.0 GiB of RAM
and Intel®Core™2 Duo CPU E8400 with 3.00 GHz clock cycle. A calculation
of a typical example with 1000 cycles similar to Example 1 takes approximately

5 min.
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Figure 4.1: Initial profile of the conduit with its cross-sections. The conduit is
assembled as a series of Conduit objects connected at Junctions. Soluble rock
is grey, dashed lines delimit particular Conduits, they represent Junctions.
Their cross-sections are the white shapes with black border. Radius of the
conduit is 4 cm and the length of each Conduit is 2 m. Note that the figure
should not be interpreted as if depicting a single big cross-section.

Flow

The shape of an EPA-SWMM Conduit object is defined by a series of widths
w (z), where the coordinate z passes from its bottom to the top. The horizontal
coordinate axis perpendicular to the conduit is labelled x while the one along
the conduit is y. EPA-SWMM demands a small positive width at every elevation
inside a Conduit. Thus every Conduit is at the beginning of the simulation taken
to be 2 m high and very narrow (0.2 mm wide) everywhere except at the position
of the initial conduit (Fig. 4.1). This conduit is positioned only in the top half
of the Conduits, its ends are centred at z = 1 m where z is measured from the
bottom of the Conduits. Thus some space is left for entrenchment. Resolution
of the defined shape in z direction is 1 cm. The maximum hydraulic head at all
the Junctions is taken to be 5 m (that is, water overflows if it reaches z = 5 m).

The narrow part of the Conduit cross-section is similar to Preissmann slot.
As Preismann slot is automatically added by EPA-SWMM to the top of every
pressurised Conduit and its influence on calculated flow is acceptable, the artificial

narrow part should be acceptable too.

The initial condition for water flow and levels is the same for all the presented
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Figure 4.2: Flowchart of the solution procedure.
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cases. It is determined with EPA-SWMM starting from dry conduits and running

the simulation for 1 month with constant inflow of 1 1/s.

Dissolution

In the narrow part of a Conduit, no dissolution is allowed, as shown in Fig. 4.3.

non-dissolving part

— dissolving part

water

Figure 4.3: Dissolution is active in parts of the Conduit object that are both
wet and representing the real conduit.

Eq. 3.11 does not account for any local differences in the viscous sublayer
thickness inside a given cross-section. These differences do exist: around a rock
protruding into the center of the passage the viscous sublayer is thinner than
inside a narrow crack in the wall. Shear velocities on different parts of the cross-
section are different, and so are the resulting shear stresses and viscous sublayer
thicknesses. Some empirical methods for calculating velocity fields do exist in
the literature [31]. They are neither easy to implement nor fast to compute.
Furthermore, they are meant for calculation of discharges, where in contrast with
our case the situation near the walls is of least importance. Therefore, a new
procedure for calculating € is proposed.

A point in a corner of the cross-section is less influenced by the bulk of the
flow as a point at a flat wall. For points in corners where two flat walls meet,
the viscous sublayer thickness is estimated to be inversely proportional to the
angle of the corner. For a point on a generally shaped wall, a generalisation of
the method is used: the angle is measured through the chosen point and two
auxiliary points on the wall in its vicinity, one on each side of it. The distance
from the central point to the auxiliary points has to be chosen and an obvious

choice is the thickness of the diffusion boundary layer €. It is solved for iteratively
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over 5 iterations. As a first approximation, € from Eq. 3.11 is used. The angle
is determined, € is divided by the ratio of this angle to straight angle, the angle
for the new e is determined and so on. There is no guarantee that the procedure
converges or that the solution is unique. Nevertheless it is estimated that the
solution is approximately correct most of the time. In this way, € (z) is obtained
as illustrated in Fig. 4.4. As can be seen in Fig. 4.5, any protrusions from other
walls entering the circle of radius € around the point are subtracted from the angle

too. For a point at a flat wall, the procedure gives the same result as Eq. 3.3.

he auxiliary points

the wall

Figure 4.4: Determining the viscous sublayer thickness. The left example is
for a point in a corner, the right one is the generalisation for an arbitrary
shape of the wall.

The z-dependent dissolution rate v (z) is calculated according to a z-dependent

form of Eq. 3.12: 5
v(z) = @ (Ceq — Cb) - (4.1)

€(z

The bulk concentration ¢y, is increasing along the flow so its average for the
Conduit should be used. However, the model assumes a constant cross-section
and uniform conditions for each Conduit, so the change in bulk concentration

along a single Conduit object has to be small. Therefore, the concentration at
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Figure 4.5: Demonstration of the algorithm for estimating e. The sketch has
been drawn by the implementation of the algorithm as a test. The circum-
ference of the Conduit is represented by the orange line, the black dots at
the junctions of straight line segments are the points defining it. € for the
point in the middle of the big bright yellow disk with black edge is being
estimated. The radius of the circle equals initial guess for e. The blue and
the red points are the auxiliary points, the estimated influence of the bulk
flow is proportional to the sum of the angles between blue and red radii.

one of the ends can be used as ¢;,. The concentration at the downstream Junction
is chosen because it would represent the average concentration well in the other
limiting case, when water flow is so small that in the Conduit equilibrium is

approached, too. The calculation is also always stable this way.

¢ 1s calculated as
v(z)dA
HT’ (4-2)

where ¢y is the bulk concentration at the upstream end and integration is over all

Ch = Cpo +

the exposed rock face. As the section is presumed to be translationally symmetric
in y direction, one integration can be substituted for multiplication and only

integration along the wetted perimeter remains:

//v (2)dA = Ay/v (2) %dz, (4.3)

where Ay is the length of the conduit section, denoted as “length” in Fig. 4.1. The

ratio between element of circumference and element of coordinate di/dz equals
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1/sin ¢ where ¢ is the slope of the wall measured from horizontal. Thus

// 2)dA = Ay/ (2 )%dz:Ay/v(z) mdz. (4.4)

The slope ¢ (z) is calculated from the cross-section. It should be noted that not
the whole cross-section is enlarged, only the parts that are both under water and

not in the narrow part at the same time. The widening is proportional to 1/ sin ¢:

. m (4.5)

A point from the narrow part enters the conduit when two conditions are
fulfilled. Its nearest and next nearest neighbours on one side have to be in the
conduit. At the same time, the point and the two neighbours have to form a
concave part of the wall, that is, a straight line connecting the end points lies in
the conduit and not inside the rock (Fig. 4.6).

non-dissolving part
3
— dissolving part 2
1
water

) Does not enter the conduit. (b) Enters the
conduit.

Figure 4.6: The points 2 and 3 form part of the conduit wall while 1 is in the
narrow part. In the case (a), 1 remains in the narrow part as the line from 1
to 3 is in the rock. In the case (b), the line from 1 to 3 is in the conduit and
1 joins the part that is being dissolved.

Advection

In a single conduit, advection is calculated in a straightforward way. The calcu-
lation of dissolution starts at the upstream part of the conduit and proceeds in
the downstream direction. Along the flow, the bulk concentration of dissolved
species is increased according to the local dissolution rate and flow. The under-
lying assumption is that during the time the solution needs to pass through the
system, the dissolution rate at each point does not change significantly, so the

timescales can be separated.
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In practical implementation it means that in the following Conduit, the re-

sulting downstream concentration ¢, of the previous Conduit is used as cpg.

The plots

To visualise the results, cross-sections of Conduits at a particular instant are
drawn. They are shown on 3D graphs. Particular cross-sections are drawn as
width of the Conduit as a function of depth, where depth is shown on z axis
and width in z direction. Consecutive Conduits are drawn at increasing values
of y. In this way, the cross-sections give impression of an outline of the conduit
in space. On this outline it can easily be seen how the evolution of the conduit
is progressing, how the conduit is being incised or widened. In the case of free
surface flow, the water level in the conduit is shown as a (blue) surface inside the

outlined conduit.

Results

Example 1 Dissolution of salt under constant recharge of 1 1/s is modelled, cpg
in the first Conduit is 0. In every cycle 90 s of dissolution are simulated. The
flow is left to stabilise for a longer time, for 1 h, after each change in geometry so
that an approximation of a steady-state solution for flow is reached. This can be
done because dissolution and advection are calculated separately from the flow.
Steady-state solution for the flow is needed because concentrations are calculated
under steady-state assumption. The result is saved every 10 cycles, that is every
15 min of dissolution. The simulation runs for 800 cycles = 20 h. Some of the

results are in Fig. 4.7.

Example 2 Everything is identical to Example 1 except the bulk is taken to be
completely unsaturated, ¢, = 0, in all the Conduits. From Fig. 4.8 it can be seen
that the results are very similar to the results for Example 1. It tells us that the
examples in this part of parameter space are not influenced much by advection.
The length scale needed for ¢, to change significantly is much longer than the
modelled system. If a longer conduit was modelled or the flow rate was smaller,
the results that included modelling of advection would be significantly different

from the ones where ¢, = 0 is presumed.

Example 3 Example 2 is further simplified to correspond to the model of lime-
stone where the surface rate is the only step limiting the dissolution. The kinetics

of surface reaction is taken to be the rate limiting step and a = «ay is presumed.
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(a) At the very beginning of the simula-
tion.

(d) After 600 steps (15 h) of dissolution. (e) After 800 steps (20 h) of dissolution.

Figure 4.7: The conduit shape and the water level at various stages of the
simulation of speleogenesis in salt. For every cross-section, passage width as
a function of elevation is drawn. Water surface is drawn in every Conduit
that is not pressurised.
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(a) After 200 steps (5 h) of dissolution. (b) After 400 steps (10 h) of dissolution.

(c) After 600 steps (15 h) of dissolution. (d) After 800 steps (20 h) of dissolution.

Figure 4.8: The conduit shape and the water level at various stages of the
simulation of speleogenesis in salt with ¢, = 0.

As a < ap, advection has even less influence than in the case of salt. Thus nei-
ther the thickness of diffusion boundary layer nor advection is calculated, instead
of it the rate of dissolution is taken to be constant and equal to 0.0004 m per
simulation step everywhere in the part of the Conduit that is being dissolved.
The dissolution rate constant is not determined so the timestep duration is not
known. If the constant was chosen the duration of each step would be fixed by

it. The results are presented in Fig. 4.9.

Example 4 A straight conduit under constant recharge conditions develops
into a channel that is entrenching downwards. The width of the channel bottom
is going to stabilise in time: if it grows too wide, the flow near the shore will
slow down and lower the local dissolution rate, while if it is too narrow, the flow
and the dissolution rates will be slowest near the center of the bottom and the
bottom will widen.

The influence of the amount of recharge on the stabilised width of the re-
sulting channel is investigated. The method from Example 1 is used, the initial
condition is the same flooded conduit. 7 runs with recharges ranging from 0.1 1/s

to 100 1/s are calculated, every run continues for 15000 cycles of 90 s of dissolu-
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(b) After 400 steps of dissolution.
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(c) After 600 steps of dissolution. (d) After 800 steps of dissolution.

Figure 4.9: The conduit shape and the water level at various stages of the
simulation of speleogenesis in limestone.

tion. Afterwards, the width of the 8th Conduit at z = 1 m wg; is taken. After
such a long run, the final width has already been reached and the measurement
site is dry.

The results are presented in Tab. 4.1. It can be seen that there are significant
differences between different examples. However, the width does not depend only
on the flow rate but also on the slopes and boundary conditions and is not uniform

in z dimension so we do not look for any trends.

Discussion

Examples 1 and 2 give very similar results. The only difference between them
is increasing ¢, as a result of dissolution and advection versus approximation
cp, = 0. This means that on the scale investigated here advected solute does not
have much influence. Both results are also similar to the examples that can be
seen in nature, in salt as well as in limestone.

In contrast, the results obtained for limestone in Example 3 differ consid-
erably both from Examples 1 and 2 and from the situation observed in nature.

Entrenchment is relatively slow while in the flooded parts the cross-sectional areas
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Q [I/s] ws; [m] remark
0.1 0.050 EPA-SWMM instability at low flow

0.3 0.029
1 0.029
3 0.047

10 0.087

30 0.113 might be influenced by the domain boundaries
100 0.214 might be influenced by the domain boundaries

Table 4.1: Dependence of channel width on recharge. At the lowest recharge,
EPA-SWMM is unable to route the flow properly. The results for the two
highest recharges seem to be influenced by the boundaries of the computa-
tional domain, that is, if the domain was extended, the result would probably
be different. The other results are meaningful for the initial geometry con-
sidered.

are increasing steadily. The flow is thus getting slower, diffusion boundary layer
is increasing and the model is evolving toward the setting where the presumption
of surface-limited dissolution is no longer valid. It proves that in modelling lime-
stone a bit more sophisticated model taking both surface reaction and diffusion
into account is needed. Sediment deposition, which is an interesting question by
itself and is neglected in this work, would also start to influence the evolution in
such conditions. The obtained results for limestone are thus highly suspicious,
the results for salt much less so.

Example 4 shows that the models can be used to predict the width of an

entrenched channel.

4.2 Conduits under transient recharge and in

basic systems

4.2.1 Comparison to a single conduit and constant recharge

Transient flow may influence speleogenesis [20] but the effect has not been in-
vestigated thoroughly. What has been done is modelling changes in recharge on
timescales that are longer than timescales of changes in aquifer characteristics
[11] as a series of different steady states. It does not cause any additional compu-
tational overhead but is useful for investigating the effects of long-term climate
changes. On the other hand, under free surface flow condition it is important
to model transient behaviour on shorter timescales, such as changes caused by

droughts and rainshowers, as they influence the water table and the states are
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not steady due to water storage.

In the early stages of speleogenesis, under fully flooded conditions and when
the water velocities are still low enough for the flows to be laminar, the flow
equations are linear [11] and differences in recharge do not have any qualitative
influence on water flow. Multiplying the inflows by some factor multiplies the
flows in all the conduits by the same factor. The only possibility for the recharge
to influence the final outcome and not only the timescale of speleogenesis is

through the dissolution length scales that do change with changing flow rate

[6].

In the later stages but still under fully flooded conditions, flow becomes turbu-
lent, the equations are no longer linear and the amount of recharge can influence
the ratios of flows in different conduits. There are then more possibilities for
recharge to influence speleogenesis. However, modelling results mostly show that
the dominant conduits that get enlarged in the later stages are already deter-
mined in the early stages of speleogenesis [32]. This influence of transients in

recharge is thus presumably too late to affect the outcome.

In unconfined aquifers, another variable influenced by recharge and influencing
speleogenesis is the position of the water table. The algorithms for finding the
water table in the existing karst aquifer models are built on the assumption of
steady-state flow [11]. Either full pipe flow or no flow is assumed in all the conduits
[11], except in laminar models [1], so the behaviour near the water table is not

resolved well.

In our investigations of free surface flow and its influence on passage cross-
sections it is necessary to model transient behaviour because the cross-sections

might be shaped by oscillations in the water table in an important amount.

As long as only a single conduit is modelled, the diversity of possible out-
comes is strongly limited. The volume of water passing through each segment
of the conduit is the same, the concentration of the solute can only increase in
the downstream direction, and influence of conduit evolution on water flow is
limited. Modelling a basic system with more parallel conduits is thus an impor-
tant generalisation and worth exploring. The computing time needed to calculate
such an example with two conduits is of the same order of magnitude as for a
single conduit so it is not necessary to leave out any details. To conclude, the
advances in this section compared to 4.1 are two parallel conduits and variable

rate of inflow.
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4.2.2 Numerical example
Flow

The method from 4.1.1 is used.

Dissolution

Dissolution is calculated according to Eq. 4.1, any reaction at the surface is pre-
sumed to be instantaneous. The average bulk concentration has to be obtained
in a different way than in Sec. 4.1 since the concentration in the downstream
Junction is not useful because the water there might be mixed with water from
another Conduit. Thus only the upstream concentration in the solution enter-
ing the Conduit might be used. The upstream concentration does not always
represent a good approximation for the average bulk concentration so a better
estimate is calculated from it. The change in concentration along the Conduit is
calculated by integration, the total amount of dissolution is calculated from the
change in concentration and the change in cross-section follows from it.

By definition of volume concentration c, its gradient in the direction of flow

y is:
de Jv(z)dl

dy  Q
Taking into account the expression for dissolution of table salt, Eq. 3.12, Eq. 4.6
de  (Ceq— ) /
—= L di. 4.7
L=l fan(a (4.7
The integral [ ap (z)dl, where ap (z) = D/e(z), can be numerically evaluated
and we label it [ ap (2)dl = o/P. From Eq. 4.7 we get

(4.6)

becomes

d 'p
’ ic) - O‘Q dy. (4.8)

Integrating along the Conduit, we get

Cp /A
= —a —. 4.9
Cho Q ( )

log (Ceq — €)

Here, ¢,¢ stands for bulk concentration at the upstream end of the Conduit and

¢y, 1s the concentration at the lower end. Their difference Ac is

rA

Ac=cp—cp = (1 —e“ Q) “(Ceq — Cb0) - (4.10)
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The total volume flow of rock from the conduit walls is thus known:

[[via=one (4.11)

Enlargement dw (z) /0t is calculated the same way as in Sec. 4.1 and normalised

to the calculated total volume flow of rock.

Advection

Advection has to be calculated in a different way than in Sec. 4.1 because the flow
no longer follows a single branch and the assumption of steady-state chemistry
is also no longer valid. The pollutant routing code of EPA-SWMM is used. It
treats the pollutants as conservative tracers influenced only by advection so it
can be coupled to dissolution. The dissolved salt is added as an Inflow at the

Junction downstream from the Conduit where it dissolves.

Results

In the presented cases, evolution of a 26 m long system of two parallel conduits
is modelled. It is modelled as a series of 2 m long horizontal sections, each repre-
sented by an EPA-SWMM Conduit object with custom cross-section connecting
consecutive Junctions. From the upstream end, for the first 4 m there is only
one conduit. Initially it is circular with diameter 0.5 m and center 1 m above the
lower edge of the simulated volume. From there on, for 18 m there are 2 parallel
conduits. At first, the diameter of the upper one is 0.4 m. From initial level with
center 1 m above the lower edge, it rises uniformly for 0.5 m in its first half and
in the second half falls back to the same level. The other conduit is horizontal,
its diameter is 0.1 m and its center is again 1 m above the lower edge. They join
together at their ends and continue as one 4 m long conduit of 0.5 m diameter.
The setting can be seen in profile view in Fig. 4.10.

Just like in the case of a single conduit in Sec. 4.1, the Conduit objects are 2 m
high, their widths are given at 1 cm distances in elevation and they are 0.2 mm
except in the conduits. The head at the Junctions is limited to 5 m again. All

the cases are calculated for salt.

Example 1 To get the initial condition, the model is run for 5000 cycles of 50 s
at recharge 100 1/s without applying dissolution to the shapes of the conduits.
In every cycle, flow and advection are calculated and dissolved material is added

to respective Inputs but is not removed from the conduit walls. From such a

42



20

0
y &7

Water

50 cm

i ] 10 cm

— ~

Figure 4.10: The system in profile view. All 4 conduits are shown.

stabilised situation, influence of dissolution is calculated for 500 cycles of 50 s
at the same constant recharge. The model run is long enough that one of the
parallel conduits dries up. Some of the results are presented in Fig. 4.11. The
way of presenting the results is basically the same as in Sec. 4.1, only in the part
where there are two parallel conduits one of them is translated in x direction to
avoid overlap.

It can be seen that initially both parallel conduits are growing while the
dissolution rates are highest in the wetted part of the descending conduit segment,
there € is the smallest. The conduit is both incising and widening. Later on, the
lower conduit is enlarged enough to discharge ever bigger fraction of the flow. At
the end of the simulation, all the water is flowing through the lower conduit so
the upper conduit is not evolving and also has no influence on evolution of the

rest of the system.

Example 2 The run starts from the same initial condition as Example 1 and
also runs for 500 steps of 50 seconds. The difference is in recharge: for 10 cycles,
100 1/s of water is supplied, and for next 90 cycles only 10 1/s, and then 100 1/s
again. The results are presented in Fig. 4.12.

During most of the simulation, the upper conduit is discharging part of the
flow only at times of bigger recharge, while the whole low flow is transmitted
through the lower conduit. In the end, the lower conduit is evolved enough that

it transmits all the water also in periods of high recharge. The influence and

43



0.12

0.1

0.08 |- 4

0.06 i

Q [m?/s]

0.04

0.02 [ 4

0 L L L L
0 5000 10000 15000 20000 25000  [mo]

t [s]

(a) Time dependence of recharge.

(c) After 100 cycles (5000 seconds) of the (d) After 200 cycles (10000 seconds) of
simulation. the simulation.

(e) After 300 cycles (15 000 seconds) of the (f) After 400 cycles (20 000 seconds) of the
simulation. simulation.

Figure 4.11: The conduit shape and the water level at various stages of the
simulation of speleogenesis in the system of two parallel conduits at constant
recharge. For every cross-section, passage width as a function of elevation is
drawn. In the part where there are two parallel conduits, the cross-sections
for one of them are offset in x direction.
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evolution of the upper conduit end by this stage. Evolution of the system is

similar to the one in Example 1.

Discussion

Comparing the cases with pulsed recharge to the cases where recharge is constant,
not much difference can be seen. In the shown pulsed case, the lower part of the
wall of the upper conduit is more rugged, which is the only noticeable difference
between the two examples. When comparing cross-sections and longitudinal pro-
files, we never found a result of variable recharge that would be very different
from the results of constant recharge. For any pulsed recharge model run we

checked, there is a constant recharge model leading to a similar outcome.
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(a) Time dependence of recharge. (b) After 100 cycles (5000 seconds) of the

simulation when recharge is low.

(c) After 110 cycles (5500 seconds) of the (d) After 200 cycles (10000 seconds) of
simulation when recharge is high. the simulation when recharge is low.

(e) After 300 cycles (15 000 seconds) of the (f) After 410 cycles (20 500 seconds) of the
simulation when recharge is low. simulation when recharge is high.

Figure 4.12: The conduit shape and the water level at various stages of the
simulation of speleogenesis in the system of two parallel conduits at variable
recharge.
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Chapter 5
Evolution of conduit networks

Apart from detailed analyses of shorter segments of conduits, the method of
modelling is applied to a larger network of conduits. We study various geome-
tries under various boundary conditions and different cross-sections of the model
domain. For example, with models representing an almost vertical plane, vertical
development of vadose systems is studied. With low dip (nearly horizontal) mod-
els, the evolution of branchwork cave systems is checked out. Models of different
levels of complexity are used, starting from simple ones.

The topology of the modelled system is a square grid of nodes connected
with circular conduits. The conduits are circular because profile evolution of
individual conduits is not investigated, the emphasis is on the whole network.
All the boundary conditions can be varied. On every node, the elevation of
each connected conduit ending is prescribed separately. The maximum head and
eventual additional water recharge are also set. All these parameters can be
varied during the model run. The flexibility suffices to model a lot of interesting
cases.

Since many examples are calculated, they are enumerated. The numbers used

do not have any special meaning.

5.1 Numerical example

5.1.1 Flow

The nodes of the network are represented as EPA-SWMM Junction objects. We
mostly simulate a 11 x 11 nodal grid, resulting in 121 nodes and 220 conduits.
Their invert elevations are set according to the needs of the particular model run.

The maximum depths at Junctions are taken to be big enough to prevent water
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spillage from the system except when needed otherwise.

Conduits are modelled as EPA-SWMM Conduit objects that connect Junction
objects representing nodes. They are circular, their Inlets and Outlets are initially
set high above Junction inverts to make space for eventual downcutting. In most
cases their initial diameter is taken to be at least 0.005 m. Otherwise, the flows
through them tend to be rounded off to 0 so no dissolution is going on and the
results are inconsistent.

EPA-SWMM demands that the system has some explicitly defined water out-
fall. For this purpose, EPA-SWMM Outfall objects are used. They have Inverts
at elevation 0 and are connected to the Junctions where free outflow is needed
with additional Conduits. These conduits have Inlet and Outlet offsets 0 and
are typically 100 m long because the length cannot be smaller than the altitude
difference. However, they never present a significant obstacle to the flow as their
diameter is 5 m.

The initial conditions for the water levels for particular model runs are cal-
culated by EPA-SWMM. The flow routing is run for 1 day with steady-state
boundary conditions and the result is used as the initial condition for modelling
the evolution. The flow simulation begins with water depth near maximum depth
at every Junction so that all the Conduits are flooded and approach to steady
state is fast. The initial condition obtained in this way is thus close to the steady
state.

Each Junction has both water and salt Inflow. Water Inflows are prescribed
for every cycle of the model (and are 0 for most Junctions in all the presented
cases). In the steady state cases, the water inflows used for calculating initial
conditions are equal to the inflows in the model. All the salt inflows are set to 0

in calculating the initial condition so water is initially completely unsaturated.

5.1.2 Dissolution

Eq. 4.11 is valid and useful also in these cases. For A in Eq. 4.10 the wetted part
of the Conduit is used, calculated from diameter and water depth. For diffusion
boundary layer thickness, the € for flat wall from Eq. 3.11 is used. In this way, ap
is independent of z, integration in Eq. 4.7 can be turned into multiplication and
o' in Eq. 4.10 becomes ap. It is further substituted with a from Eq. 3.2 so that
both limestone and salt cases can be calculated with the same code. For salt, the
value of ag is taken to be 1 m/s so that a &= ap. For limestone, the values used
are ag = 21077 m/s, coq = 0.0001108 and D = 1072 m?/s. All the examples

are for salt except if noted otherwise.
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As the Conduits are circular, the diameters are increased in accordance to
increase in their volumes. Their inlet and outlet offsets are also changed. In
phreatic conditions, they are lowered as to keep the centre at constant position.
Under vadose conditions they are lowered so that the rate of lowering of the
bottom of a conduit equals the dissolution rate in the conduit (Fig. 5.1). In this
way, the lowest part of the conduit is positioned properly. This choice was made
because the elevation of the lowest part determines if the water will flow through
the conduit or not (Fig. 2.3) and the lowest part is also the most frequently wetted

one.

Figure 5.1: Enlargement of circular conduit cross-sections. In a timestep At,
pressurised conduits enlarge for vAt in all directions, keeping the center of
the conduit fixed. In conduits with free water surface, the bottom lowers for
vAt and the conduit radius increases for k - vAt, where k is the fraction of
the conduit wall that is under water.

5.1.3 Advection

The method from Sec. 4.2 is used.
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5.2 Results

5.2.1 Graphical representation

The results are drawn in the plane of the grids. When describing the graphs,
relative positions of their parts are named by cardinal directions to avoid any
confusion with the coordinates in the model itself. The part of the grid that is
drawn on the left side of the graph is named west, the part that is drawn at the
top is north, the lower part is south and the right part is east. For each presented
stage, there are two graphs. On both, each line segment represents a Conduit
and at every line junction there is a Junction.

The left graph shows the water flow. The width of each line is proportional
to the flow through the corresponding conduit (and a small constant is added so
that the dry conduits are also visible). In the strongly coloured parts the flow is
pressurised, while partially filled conduits are painted in paler shades (the lower
the water level, the paler the shade). The conduits through which the water
flows in south or east direction are painted black (or grey) while the flow in the
opposite direction is marked with red.

The emphasis of the right graph is on the conduit sizes. The width of each
line is proportional to the diameter of the corresponding conduit, while the colour
marks the growth rate. Deep blue colour means no growth, while warmer colours
(through green and yellow up to orange and red) represent bigger growth rates.

The circles drawn around some junctions represent water inflows. The diam-
eter of the circle is proportional to recharge.

In the first figure of an example, the boundary conditions are marked with
a frame around the left graph. Black line means no flow into or out of the net-
work, which is the default situation. Grey line means seepage face, free outflow.
When a corner junction is adjoined by both black and grey lines, free outflow is
implemented for it.

The legend of the symbols is presented in Tab. 5.1.

5.2.2 Network on a low dip plane
Uniform network, irregular inflows (example 21-35)

The modelled grid is square and all the conduits are 10 m long. It descends 1 m
per node in east direction, while there is no slope in the north-south direction.
The north, south and west faces are impermeable, while on east side the outflow is

free. The free outflow is realised by connecting each Junction on the eastern face
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Flow (left) graphs

pressurised flow from west to east, the width is

| .
proportional to the flow rate
_— pressurised flow from east to west
I pressurised flow from north to south
free surface flow from south to north, the colour
is paler for less full conduits
O inflow, the diameter is proportional to the flow

rate
watertight edge, no flow boundary condition,

used as a part of the frame

edge with a free outflow, water can leave the
network freely

Conduit (right) graphs

N-S oriented conduit, line width is proportional
to conduit width

W-E oriented conduit, warmer colours mean
— higher enlargement rates and this conduit is not
being enlarged at all

N-S oriented conduit being enlarged swiftly

Table 5.1: The symbols used in the graphs of the networks. Different examples
use different scales for the flow rates, inflow rates, conduit widths, and conduit
growth rates, because the differences between examples are too big and do
not allow the use of common scales.
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(a) After 10 cycles = 3000 s.

(b) After 50 cycles = 15000 s.

Figure 5.2: Uniform network with irregular inflows (example 21-35). On the
left graph, wider line means more flow, paler line means less full conduit and
red line means flow in north or west direction. On the right graph, wider line
means wider conduit and warmer colour means higher rate of widening. The
frame of the top left graph shows boundary conditions: black line means no
flow while grey line means seepage face, free outflow. Circles denote recharge
points. The diameter of each one is proportional to the recharge rate.

52



to an Outfall object by a 100 m long Conduit of 5 m diameter. The lower edges of
these Conduits are at the inverts of the Junctions, while the other Conduits are
initially positioned 100 m above the inverts. Initial diameter of all the Conduits
in the network is 0.005 m. Maximum water depth at the Junctions is 120 m
except for 5 of the Junctions where it is 111 m. At these 5 Junctions there are
the only water inflows into the system and they are limited to 1000 1/s each. The
initial conditions are obtained by running the flow for 1 day. The model is run
for 50 steps of 300 s, together 15000 s.

In nature, a situation vaguely corresponding to such a grid would be a sloping
buried layer of soluble rock reaching the surface at the lower edge. There are five
sinkholes above it which represent the only points for water to enter the aquifer.

The results are presented in Fig. 5.2. It can be seen that after 15000 s of
evolution all the water is flowing directly in the east direction from the inflow to
the edge, there are no confluences. It comes as no surprise: at any time around
majority of the junctions (maybe at every junction but a formal proof has not
been sought), the hydraulic gradient away from the junction is largest in the
conduit toward east. Initially all the conduits are of a same size so the outflow
into the eastern conduit is higher than into the others. The conduit toward east
thus grows fastest and its bottom is lowering fastest. Eventually the water level
at the junction falls below the lower edges of the other conduits and the eastward

one remains the only one draining it.

Non-uniform network, irregular inflows, small (example 21-137)

Everything is the same as in example 21-35 except for the diameters of the con-
duits. The diameters are random and uniformly distributed between 0.0001 m
and 0.01 m. In the results in Fig. 5.3 it can be seen that the irregularity in the
initial diameters enables formation of a more complex conduit network than in
the case of a uniform network (example 21-35). The resulting flow network tends
to form a branchwork and the conduit network is a maze.

In this example, the flow as a function of time is also investigated. In the EPA-
SWMM Report file in the Flow Routing Continuity section, the information on
External Outflow can be found. The value represents all the water that has been
conducted through the conduit network during the 300 s of simulation. The
average flow rate during each cycle is obtained from it and the result is presented
in Fig. 5.4. Initially the outflow is small because the small conduits do not allow
much water to pass at the maximum head gradient allowed by the topography.

Later on, the inflow from each recharge point is increasing in an exponential-like
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(a) After 10 cycles = 3000 s.

EEEN

1
ey o

R
r |

(b) After 50 cycles = 15000 s.

Figure 5.3: Non-uniform network with irregular inflows (example 21-137).
The explanation of the graphs is the same as in Fig. 5.2. It can be seen that
the evolved conduit network (right graph) resembles a maze while the flow
(left graph) is limited to a branchwork-like pattern.
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Figure 5.4: Outflow as a function of time in the case of a non-uniform network
with irregular inflows (example 21-137). Initially it is small, then it grows

irregularly because different recharge points reach their limits at different
times. In the end it stabilizes around the total inflow of 5 m?/s.

25



manner until the limit at 1 m3/s is reached and the increase stops. As the inflows
reach their limits at different times, the outflow increase has “kinks” that appear
at multiples of 1 m?/s, the limit of a single recharge point. When all the inflow
is drained through the conduit network, the outflow has a slight overshoot due

to the stored water and then it stabilizes around the total inflow of 5 m?/s.

Non-uniform network, irregular inflows, limestone (example 21-237)

(a) After 10 cycles = 3-10% s = 95 a.

-

| ! -+
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(b) After 50 cycles = 1.5 - 100 s = 475 a.

Figure 5.5: Non-uniform network with irregular inflows in limestone (example
21-237). The explanation of the graphs is the same as in Fig. 5.2. It can be
seen that the evolved conduit network (right graph) is a more complex maze
than in the salt case (Fig. 5.3) while the flow (left graph) is almost as limited
to a branchwork-like pattern.

Everything is the same as in example 21-137 except for the dissolution kinetics

and the timesteps. When calculating dissolution, o, ceq, and D for limestone from
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5.1.2 are used. As these parameters result in a much slower dissolution than in
the case of salt, the modelled time has to be increased substantially.

Lengthening the modelled time through increasing the number of timesteps
would result in too long calculation times to be practical. If the timesteps were
increased instead, it would not improve the situation. The reason is that the most
time-consuming part of the calculation of each timestep is flow and pollutant
routing with EPA-SWMM and computational time needed is proportional to the
duration of the model timestep.

For this reason, routing and dissolution timesteps are decoupled. In each
cycle, 300 s of routing is calculated, just like in the salt example (21-137). Dis-
solution in the same time is calculated. As the dissolution rates are small, the
network does not change much in the time of one cycle. The dissolution rates
in the next cycle are therefore almost the same and are not calculated again,
the dissolution rates from the previous cycle are used instead. In this way, 106
cycles are lumped together before new dissolution rates are calculated. In the
code it is accomplished with multiplying the effects of dissolution on widening of
the conduits in a 300 s timestep by 10° and applying them to the network. In
this way, effective dissolution timestep of 3 - 10® s is obtained without increase in
calculation times.

In the results in Fig. 5.5 it can be seen that initially the dissolution rates
are similar in all the conduits that do have any flow. This is a consequence of
dissolution rates being limited mainly by the surface reaction and slow: since
ap > ag, 0 R, and ¢ K ceq for most conduits. Correspondence of this result
to the situation in nature is questionable although it should be noted that the
initial conduit size is relatively big and that the flow is already turbulent. In the
later stages, enlargement of the conduits slows down when they are no longer

fully flooded.

Non-uniform network, irregular inflows (example 21-52)

The modelled grid is square with 51 x 51 junctions and all the conduits are 10 m
long. It descends 1 m per node in east direction, while there is no slope in the
north-south direction. The north, south and west faces are impermeable, while
on east side the outflow is free. The free outflow is realised by connecting each
Junction on the eastern face to an Outfall object by a 100 m long Conduit of
5 m diameter. The lower edges of all Conduits are initially positioned 100 m
above the inverts. Initial diameter of each of the Conduits in the network is a

random number distributed uniformly between 0.000 1 m and 0.01 m. Maximum
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(b) After 44 cycles = 13200 s.

Figure 5.6: Non-uniform network with irregular inflows on a larger scale
(example 21-52). The explanation of the graphs is the same as in Fig. 5.2.
Again, the evolved conduit network resembles a maze and the flow forms a
branchwork-like pattern.
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water depth at the Junctions is 220 m except for the Junctions with water inflows
where it is 151 m. This ensures that no water can leave the system at Junctions
that have no recharge and do not represent outflow nodes. For every Junction
the probability of having an inflow is 0.025. Every inflow is a random number
distributed uniformly between 0 and 1000 1/s. The initial conditions are obtained
by running the flow for 1 day. The model is run for 50 steps of 300 s, together
15000 s. For calculating the water flow, full Saint Venant equations are solved as
there are some flow instabilities. If the inertial terms were dropped, the obtained
solution would in this case not be a good approximation of the correct solution,
and the calculation would even take more time.

The results are presented in Fig. 5.6.

Uniform network, irregular inflows, conduits at different elevations (ex-
ample 21-133)

The only difference between this example and example 21-35 is that in 21-133
the conduits’ elevations are randomly scattered. Initial Inlet Offset and Outlet
Offset of a chosen conduit take a random value between 99 and 101.

The results are presented in Fig. 5.7. While the initial development under
phreatic conditions resembles the evolution of example 21-35, later on the situ-
ation changes and some branchwork formation does happen. The scattering in
elevation of the conduits is sufficient to break the symmetry and enable non-trivial

evolution.

Non-uniform network, irregular inflows, tilted sideways (example 21-
337)

Everything is the same as in example 21-137 except that the network is also
tilted sideways. It descends 0.3 m per node in south direction. The purpose
of the calculation was to check if aligning the slope with the direction of the
conduits adversely affects our examples, which are already artificial enough given
that the grids are perpendicular. The expected and desired result would be that
the outcome is quantitatively different from the results of the example 21-137 to
show that the model does respond to small changes in the slope direction. At the
same time, we would like both results to be qualitatively similar as a proof that
the set of the examples with the grid and the slope parallel is not too limited
in behaviour compared to more general cases. The resulting conduits and flow

routes, presented in Fig. 5.8, confirm our expectations.
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(a) After 8 cycles = 2400 s.

o

(b) After 50 cycles = 15000 s.

Figure 5.7: Uniform network with irregular inflows and conduits at different
elevations (example 21-133). The explanation of the graphs is the same as
in Fig. 5.2. Initially the results resemble the ones for uniform network with
irregular inflows and conduits not scattered in elevation, while later on some
concentration of the flow does happen.
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(a) After 10 cycles = 3000 s.
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(b) After 50 cycles = 15000 s.

Figure 5.8: Non-uniform network with irregular inflows tilted also to the side
(example 21-337). The explanation of the graphs is the same as in Fig. 5.2.
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Non-uniform network, irregular inflows, pulsed recharge (example 21-
437)

Everything is the same as in example 21-137 except for the recharge. Instead
of constant recharge of 1000 1/s in every inflow, the recharge is 3000 1/s in one
cycle and then 500 1/s for the next 4 cycles. The average recharge is thus kept
the same. The initial condition is calculated with inflows of 500 1/s for 1 day,
3000 1/s inflows are introduced in the first cycle of dissolution.

The results in Fig. 5.9 are somewhat different from the constant recharge re-
sults. At the same time, both results are similar, the differences are modest. This
indicates that modelling of network evolution at transient recharge conditions is

possible with the tools we have developed.

5.2.3 Networks as vertical cross-sections through aquifers
Uniform network, uniform inflow (example 21-15)

In the modelled grid, every conduit is 10 m long. It descends 1 m per node in
east direction, while with every step south it descends 9.9 m. The cross-section
can thus be thought of as a vertical or nearly vertical one. The invert of the
Junction at the southeastern corner is at elevation 0. The maximum water depth
at every Junction is prescribed so that the maximum head is 220 m. The north,
south and west faces are impermeable, while on east side the outflow is free. The
free outflow is realised by connecting each Junction on the eastern face to an
Outfall object by a 100 m long Conduit of 5 m diameter. The lower edges of
these Conduits are at the inverts of the Junctions, while the other north-south
Conduits are initially positioned 99 m above the inverts and east-west conduits
100 m above the inverts. The difference in elevation of the Conduits is meant to
make sure that water preferentially flows in the direction of the bigger gradient,
that is toward south (see Fig. 2.3). Only if the sub-vertical south-leading Conduit
is full and the water level at the Junction rises above it, water can start flowing
into sub-horizontal conduits.

Initial diameter of all the Conduits in the network is 0.0005 m. At every
node along the northern face there is a water inflow limited to 5 1/s. The initial
conditions are obtained by running the flow for 1 day. The model is run for 50
steps of 300 s, together 15000 s.

The inspiration for modelling such a network from nature is a vertical cross-
section through a massif. There are conduits that are nearly vertical and others

that are nearly horizontal, one side and the bottom are impermeable, one side is
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(a) After 21 cycles = 6300 s (at high recharge).

| -

(b) After 22 cycles = 6600 s (at low recharge).

(c) After 46 cycles = 13800 s (at high recharge).

Figure 5.9: Non-uniform network with irregular pulsed inflows (example 21-
437). The explanation of the graphs is the same as in Fig. 5.2.
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(a) After 5 cycles = 1500 s.
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(b) After 50 cycles = 15000 s.

Figure 5.10: Vertical uniform network with uniform inflow (example 21-15).
The explanation of the graphs is the same as in Fig. 5.2.
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open and on the top there is precipitation.

The results are presented in Fig. 5.10. The water level starts falling from the
open face into the massif, in the vadose zone the water flow is vertical and in
the end there is a water table cave at the southern edge and water reaching it in
vertical direction.

Drop of the water table in unconfined aquifers has also been modelled by

Dreybrodt et al. [11]. Similar results have been achieved.

Non-uniform network with one large conduit, point inflow (example
21-8)

The diameters of most of the conduits are determined in a statistical way but not
independently for each conduit. We try to model stronger and weaker disconti-
nuities so that the diameter of each conduit is influenced by the line it lies in. In
order to achieve this, the conduits forming a straight line are grouped together.
The diameter of each of the conduits is a sum of group contribution and eventual
individual contribution. The group contribution is the same for each conduit in
a given group. It is a random number between 0 and 0.005 m. Every group has
0.5 probability that its conduits also get individual contribution. In this case, it
is calculated individually for each conduit of the group and is a random number
between 0 and 0.01 m.

Initial diameter of the topmost horizontal conduit is 0.1 m. At the north-
western junction there is an inflow limited to 100 1/s. The initial conditions are
obtained by running the flow for 1 day. The model is run for 1500 steps of 300 s,
together 450000 s.

The model is meant to reproduce evolution of drawdown vadose passages. At
first a water table cave forms at the northern side of the network and percolation
toward south is small. When the southern conduits are enlarged, the water table
is drawn down and the northern conduits stay dry. The process repeats itself.
The results are presented in Fig. 5.11.

The setting in this example is similar to the one in Figure 5.5 and some others
in Dreybrodt et al. [11]. In both models, development of big conduits causes the

conduits above them to lose their recharge.

Non-uniform network with two large conduits and two point inflows
(example 21-25)

Just in the example 21-8, the initial diameter of the conduit along the northern

edge is 0.1 m and at the north-western junction there is an inflow limited to
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(a) After 450 cycles = 135000 s.

(b) After 750 cycles = 225000 s.

(c) After 1500 cycles = 450000 s.

Figure 5.11: Vertical non-uniform network with one large conduit (example
21-8). The explanation of the graphs is the same as in Fig. 5.2. The diameter
of the biggest conduit in (c) is 2.56 m.
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(a) After 8 cycles = 960 s.
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(b) After 20 cycles = 2400 s.

Figure 5.12: Vertical non-uniform network with two large conduits and two
point inflows (example 21-25). The explanation of the graphs is the same as
in Fig. 5.2. As the inflow limit at the north-western junction is two orders of
magnitude smaller than the south-western one, the same is true for the circle
labelling it, which is thus small.
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100 1/s. There is also a conduit of 0.1 m diameter along the southern edge and
an inflow at the south-western junction meant to be unlimited and implemented
as an inflow limited to 10000 1/s. The other conduits have initial diameter of
0.005 m, except for one of the possible connections between northern and southern
conduit whose initial diameter is 0.02 m. The initial conditions are obtained by
running the flow for 1 day. The model is run for 50 steps of 120 s, together 6 000 s.

The results are presented in Fig. 5.12. The northern conduit is being enlarged
until the water escapes into the southern conduit, firstly through the initially
bigger connection and then further upstream. The southern conduit is pressurised

and growing continuously.

Network of linked wells (example 21-30)

In this example, there are three wells of initial diameter 0.2 m extending from the
northern to the southern edge. There are 5 conduits of initial diameter 0.005 m
extending from the western to the eastern edge connecting the wells between
them and to the outlets. The other conduits are of negligible diameter 10~° m.
The recharge is through three inflows of 100 1/s each at the northern end of each
well. The model is run for 50 steps of 60 s, together 3000 s.

The results are presented in Fig. 5.13. At first, the eastern well which is closest
to the outflow boundary develops fastest as the head gradients away from it are
large. As a result of the enlargement of the downstream conduits, the heads in
the well fall and it turns into a vadose shaft. From there on, it represents an
outfall boundary for the conduits leading from the central well. The same story
hence repeats with the central and later on with the western well.

It has been recognized that deep caves tend to occur near the edges of karst
plateaux [16]. Possibly the high hydraulic gradients in such areas that in the

model favour the evoluiton of the shaft nearest to the edge also give rise to them.

5.2.4 Discussion

The trivial results for the uniform networks make one think that randomness of
the initial situation may be an important factor in speleogenesis.

In the case of a low dip network, the expected result would typically be a
branchwork or a maze cave. Most of the results obtained are hybrids, maze caves
with branchwork flow patterns. It indicates that conduit networks may evolve
from a maze to a branchwork stage, at least when limited to a single layer.

The vertical non-uniform networks are meant to reproduce vertical develop-
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(a) After 8 cycles = 480 s.

(b) After 15 cycles = 900 s.

(c) After 27 cycles = 1620 s.

Figure 5.13: Vertical network of linked wells (example 21-30). The explana-
tion of the graphs is the same as in Fig. 5.2.
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ment and formation of drawdown vadose passages. As far as we can tell their

evolution is modelled successfully.
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Chapter 6
Discussion of the results

The presented examples show that currently available basic knowledge, computer
hardware and software allow us to model speleogenesis under free surface turbu-
lent flow conditions. Both evolution of conduit networks in karst aquifers and
evolution of shapes of particular conduits can be investigated with the models
developed. In addition to steady-state recharge conditions, transient flow can be
modelled.

The results we have obtained are similar to what one would expect, they
mostly do not oppose the conceptual ideas on speleogenesis we already had before.
This absence of surprising findings was to be expected because we have begun
working on a new field. We have looked at only a small part of the available
parameter space. The general agreement between the results and the expectations
also strengthens our opinion that the model is generally good. If these first results
were too spectacular, it would with a high probability indicate a mistake in the
model.

An open question in speleogenesis that we did touch is, at which stage is
it determined which conduits will be enlarged further and which ones will stay
small and be abandoned. There are many initial fractures but only a few of them
develop into big conduits and cave passages. Is the choice “made” already in the
phreatic phase or can it be changed later in the vadose phase? Some of the exam-
ples illustrate this subject. The example 21-35, Fig. 5.2, is the control case. The
inflow locations are the only thing that can influence which of the conduits are
enlarged, everything else is uniform. The examples 21-137 and 21-133 are both
similar to 21-35 but with a crucial difference. 21-137 is heterogeneous from the
beginning. Water is choosing its way based on conduit diameters and conductiv-
ities and a relatively complex conduit network results. In 21-133 the symmetry

is broken at the onset of free surface flow conditions so all the difference between
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21-133 and 21-35 arises after the phreatic-vadose transition. The difference is
quite obvious while the network developed in 21-133 is not nearly as complex as
the one in 21-137. It looks like both phreatic and vadose phase can be important.

In most of the networks representing a shallow plane, the flow ends up being
concentrated in a pattern resembling a branchwork. If the model run was ex-
tended, only the branchwork of the conduits would be being enlarged and sooner
or later we would say that the shape of the resulting cave is strongly determined
by the free surface phase. However, it should be noted that only one plane is
modelled. In a 3D setting, the flow would sooner or later shift to a lower plane
and cease developing the cave, which cannot happen in our models. In principle
there are no obstacles toward building a model of a 3D network with the tools
presented. We have not attempted it because there are plenty of questions wait-
ing to be answered that do not demand it. At the same time, the post-processing
and presentation of 3D results would have presented a challenge to us.

Another way to go on from these models is including the effects of sediment
transport, sediment deposition and abrasion by the sediments. It would sure make
evolution of conduits and networks more interesting. Inflowing sediment would
for example obviously heavily influence the outcome of example 3 in Sec. 4.1.

The karst community is mostly interested in limestone caves while the results
presented are mostly valid for salt due to the complexity of limestone dissolution.
Building a suitable model of limestone dissolution on the level of chemical kinetics
and including it into the speleogenesis model would be of interest too.

The source codes, input files and results are supplied on a CD. The main
reason for including the CD are animations that present a chosen case and its

development much better than the few graphs that can be put on paper.
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This study presents the development of a suitable numerical method for porous media flow with free
and moving boundary (Stefan) problems arising in systems with wetted and unwetted regions of
porous media. A non-singular version of the method of fundamental solutions (MFS), termed the
boundary distributed source method (BDS), is applied. Darcy flow and homogenous isotropic porous
media is assumed. The solution is represented in terms of the fundamental solution of the Laplace
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discretization and the free parameters is performed. The main contributions of the study are the
application of the BDS to free and moving boundary problems and the comparison of BDS with MFS for

these types of problems. The developed model can be applied to various geohydrological problems.
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1. Introduction

The exchange of flow and solutes between the conduits and
the surrounding matrix plays an important role in many engi-
neering and geohydrological problems [1]. A related example are
karst aquifers, where the conduits are usually embedded into a
fractured-porous medium. There, the storage and the transport of
potential pollutants through the aquifer depends on the exchange
processes between the potentially polluted conduits and the
matrix [2,3]. It is therefore of importance to understand the
dynamics of these exchange processes and to consider them in
realistic models of karst aquifer.

The analytical solutions of such models can be obtained only
for very limited, geometrically simple, linear 2D cases [4,5].

Different coupled continuum pipe-flow models have been
used in the past to numerically model flow and solute transport
in karst aquifers. These models rely on a finite difference method
(FDM) [6,7] or finite element method (FEM) [8,9] discretisation
scheme. They have successfully captured the dynamics of flow
and transport in coupled conduit-matrix systems. In the case of
unconfined aquifers one has to consider the presence of a water

* Corresponding author at: Karst Research Institute ZRC SAZU, Titov trg 2,
SI-6230 Postojna, Slovenia. Tel.: +386 41 242 333.
E-mail addresses: matija.perne@zrc-sazu.si (M. Perne),
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0955-7997/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.enganabound.2012.06.001

table, a moving (transient character) boundary or free (steady
character) boundary between the saturated and the unsaturated
zone.

In cases when the mesh based methods, such as the FDM or
FEM, are used for solving the above mentioned problems, various
mesh refinement schemes are invoked to numerically account for
a suitable determination of the position of the unfixed boundary.
The principal bottleneck in these types of numerical methods
is the time consuming re-meshing of the evolving water table
and wetted/unwetted domains which limits such methods to
problems with quite trivial geometrical patterns [10].

In order to build effective models for such situations, compu-
tationally new and efficient, meshfree modelling concepts [11-14]
have to be considered.

Meshfree methods have proven to be very efficient in treating
complex moving boundaries [15]. This work presents the use of
such methods for a computational model of a conduit embedded
in a matrix. It is focused on studying the exchange between a
conduit and unconfined matrix due to a sudden change of
pressure in the conduit. The method of fundamental solutions
(MFS) and its non-singular version, termed the boundary distrib-
uted source (BDS) method proposed by Liu [16], are used to
model a related moving boundary problem. Our objectives are
demonstrating the use of BDS in problems related to groundwater
flow, achieving advantages over classical numerical methods, and
studying sensitivity of BDS to model parameters.
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MEFS is a numerical technique that falls in the class of methods
generally called boundary methods. The other well known repre-
sentative of these methods is the boundary element method
(BEM). Both methods are best applicable in situations where a
fundamental solution to the partial differential equation under
consideration is known. In such cases, the dimensionality of the
discretisation is reduced. BEM for example requires polygonisa-
tion of the boundary surfaces in general 3D cases, and boundary
curves in general 2D cases. This method requires solution of the
complicated regular, weakly singular, strongly singular, and
hypersingular integrals over boundary segments, which is usually
a cumbersome and non-trivial task [17].

Both, BEM [18,19] and MFS [15,20], are well suited for unfixed
boundary (Stefan) problems [21] due to the fact that only the
boundary discretisation needs to be moved, without any connec-
tion with the domain discretisation.

A comprehensive survey of the MFS and related methods for
elliptic boundary value problems and inverse problems can be
found in [22,23]. The MFS has certain advantages over BEM, that
are mostly visible in the fact that only pointisation of the
boundary is needed, so that integral evaluations are completely
avoided. Because of this there is no principal difference in coding
between the 2D and the 3D cases. The principal drawback of MFS
is the presence of an artificial boundary that needs to be
constructed in cases with singular fundamental solutions (such
as for example the fundamental solution of the Laplace equation)
in order to allow the solution to comply with the boundary
conditions. The MFS with an artificial boundary has been pre-
viously used in the context of transport of pollutants in porous
media [24] and in the context of free surface flow [25].

The determination of the distance between the real boundary and
the fictitious boundary is based on experience, by balancing between
the increased accuracy and the increased ill-conditioning with the
larger distance. Quite recently, various efforts have been made to
remove this drawback of the MFS, so that the source points can be
placed on the real boundary directly. Young et al. [26] were the first
to propose placing of the source points on the boundary in the MFS.
They proposed novel ways to directly determine the diagonal
coefficients for simple geometries or use the results from the BEM,
based on the fact that the MFS and the indirect boundary integral
formulation are similar in nature. In their approach, the information
of the neighbouring points before and after each source point is
needed in order to form the line segments for integrating the kernels
to obtain the diagonal coefficients. This is essentially the same
information of the element connectivity as in a BEM mesh. Sarler
[27] proposed a similar modified MFS, where the diagonal terms are
determined by the integration of the singular or hypersingular
fundamental solution on line segments, formed by using neighbour-
ing points, and the use of a constant solution to determine the
diagonal coefficients from the derivatives of the related fundamental
solution. This first attempt has been followed by the formulation
[16], where in order to remove the singularities of the fundamental
solutions, the concentrated point sources are replaced by the
distributed sources over areas (for 2D problems) or volumes (for
3D problems) covering the source points. The distributed sources,
associated with the derivatives of the fundamental solution, have,
however, been calculated as in [27]. Liu called his non-singular MFS
approach BDS. The main objective of this paper is to solve the
moving boundary problem, associated with the conduit and the
porous matrix by the BDS and to compare it with the classical MFS
and analytical solutions.

2. Governing equations

Throughout the paper we consider the porous matrix to be
homogeneous and isotropic, neglect capillary and evaporation

effects, and consider only 2D solutions. Flow is assumed to follow
Darcy law [28-33], and hydraulic conductivity or permeability of
the fractured rock is constant and isotropic. The liquid-saturated
part of the matrix is represented by a connected 2D domain Q
with boundary I'. The medium is described by its hydraulic
conductivity K and porosity @. The problem is tackled in Carte-
sian coordinates p ==Xix-+yiy, where X and j represent the
Cartesian coordinates and ix and iy the base vectors. The gravity
is directed toward —iy.

The quasi-steady state fluid flow in Q is described by Darcy
law

G=-KVa, (¢)]
where § is flux and h the hydraulic head. A length scale I, is
selected. Dimensionless coordinates are defined as x=X/lp and
y=5/lo, p=p/lo. Dimensionless flux q =K~ q with h="h/Il, are
introduced in order that V=1[,V. Eq. (1) can afterwards be
rewritten in dimensionless form

q=-Vh. )

Incompressibility is assumed and thus the specific storage in
comparison with the specific yield is neglected. Incompressibility
implies

V.q=0 3)

in the whole domain Q. Egs. (2) and (3) give the Laplace equation
for the dimensionless hydraulic head in Q

V2h=0. 4)

The boundary is divided into three parts with Dirichlet,
Neumann and free surface boundary conditions; ie. I'=I"uU
I'NUTT™S (see Fig. 1). On I'® there is a Dirichlet type of boundary
condition. The hydraulic head is specified with the forcing
function h®,

h@)=h"p), pel®. )

On I'N there is a Neumann type of boundary condition. The
hydraulic head gradient is specified with the forcing function gN

oh N N
@(P)*q ®), pel™, (6)

where n} is the outward normal to the boundary '™ and qN(p) is
the normal component of flow. For the Laplace equation, the
liquid surface I'™ represents a special case of Dirichlet boundary
condition. The free surface boundary condition is defined through

Unsaturated
part of the
porous medium

Conduit

Saturated part

/ of the porous

Impermeable X
medium

boundary N
7 )

Fig. 1. Schematics of the problem domain and the boundary conditions.
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the height

h(p)=ym®), pel™. Y

The liquid surface represents a moving boundary. The velocity of
a point at the moving boundary is

0

P _Vhp). per™, ®)
ot

where t is dimensionless time, t = £K /(¢lo), and f is time. Eq. (8)
can be projected onto the normal to the surface nf® = nyix+nyiy

3
nfs. (Tlt) =nfS . (~Vh(p)). ©)

The free surface is almost horizontal in all the calculated cases so
ny is much smaller than n, and is neglected. The free surface is
thus moved in every timestep according to equation

oy ¢oh

ot~ oy’ ao

It is the purpose of the present work to calculate the hydraulic
head (4) and the time evolution of the boundary I'™ as a function
of the boundary conditions (5)-(10) and initial position of I'™S.

3. Solution procedure
3.1. Solution of the Laplace equation

3.1.1. Method of fundamental solutions

The MFS is based on the basic theory of partial differential
equations (PDEs), stating that any linear combination of the
solutions of a linear PDE is also a solution. The method belongs
to the class of boundary meshless methods for solving various
types of partial differential equations and has been increasingly
applied in engineering since 1964 [34].

The solution is built as a linear combination of fundamental
solutions of the Laplace equation G;(p). By definition, a funda-
mental solution, G; solves the equation
V2Gi=4(py), an
where

. P
“a oy
and o(p) is Dirac delta function. The form of the fundamental
solution is [16]

1
Gi(p) = — 5 log(Ip—p;l),

Ip—p;ill =/ (P—P) - (P—P)- (12)

The solution is built as the sum

N
hp)~ > Gi(p)ci, (13)
i=1
where N is the number of all fundamental solutions and c; are the
coefficients. Note that the positions of the singularities p; have to
be outside Q+1I" so that h solves the Laplace equation inside
Q+T. The line that connects the singularities is called artificial
boundary (Fig. 2). The coefficients are determined by collocating
the boundary conditions. Each point with Dirichlet boundary
condition gives an equation

N
> Gyci=Hh;,

i=1

Gy=Gip). hj=h"mp), pjel®. (14)

Fig. 2. Concept of MFS. Small white circles are collocation nodes with specified
boundary condition, crosses are the fundamental solution singularities, and the
dashed line is the artificial boundary sAx away from geometrical boundary.

In the case of Neumann boundary conditions, the row

N
> Kici=q;,

i=1

_0G . 1(@-p)-n
K= E(p})iiﬁiﬂpjfpi”z ,
g =q"m), pjel™ (15)

follows from every boundary point. Both sets of equations are
solved together as one matrix equation. A square system of linear
equations is assembled from the rows (14) and (15) for solution of
N unknown coefficients c;.

3.1.2. Boundary distributed source method

BDS method is conceptually similar to MFS, and the principal
difference between both methods is in choice of the basis
functions [16]. In MFS, the fundamental solutions are used as
basis functions, while in BDS, the solutions for distributed area
sources are used. The chosen shape of the source is a circle A of a
radius ro with uniform source density of 1/(zr3). The form of the
solution is equal to the integral of the original fundamental
solution G on A [16]

I 1
2 lOg(Hp—piH)

3 1\ , r3—lp—p;I?
Frog()+ oGP

for Ip—p;ll > ro,
Gi(p) = (16)

for Ilp—p;ll <rp.

As the basis functions have no singularities, they can be
centred on the boundary points, thus no separate choice of the
source points p; is needed (Fig. 3). The solution of the Laplace
equation is approximated as

N
hp)~ > Gip)ci, 17
i=1

where N is the number of all boundary points and c; are the
coefficients. The coefficients are determined from the boundary
conditions. Each point with Dirichlet boundary condition gives an
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Fig. 3. Concept of BDS. Small white circles are collocation nodes with specified
boundary condition, dark grey circles A are distributed sources with radius ro.

equation
N A
G,'jC,' = hj,
i=1

Gy=Gip). hi=h"m), pel®. (18)

The equation that follows from each boundary point in the case of
Neumann boundary conditions is

N

Kyci=q;. q=q"m), pjel™. (19)
iz1

TypicallyA kil} is ta}(en to be the normal component of the
gradient of G; : Kj; = 8G;(p;)/on(p)). By this definition, the diagonal
terms of the matrix, corresponding to the collocation points with
Neumann boundary conditions, would always equal zero. How-
ever, an indirect method is used instead [27]. First, Dirichlet
boundary condition h(p;) = 1 is used for all the boundary points in
I' and coefficients c{ are obtained. As the normal component of
gradient is presumably zero in the case of the solution for a
constant value, the diagonal terms can be expressed as

Ki=— L3 Ryes. 20

Both sets of equations are solved together as one matrix
equation. A square system of linear equations is assembled from
the rows (18) and (19) for solution of N unknown coefficients c;.

3.2. Free parameters of the methods

In MFS, the free parameter of the method represents the
distance of the artificial boundary from the geometrical boundary.
In BDS, the free parameter of the method represents the radius of
the desingularisation circle.

3.3. Symmetry

Consider a situation where the geometry and the fields exhibit
reflection symmetry. Let us distribute the sources of the basis
functions consistently with this symmetry. Respectively, for every
basis function, there is another one centred on its mirror image. In
the solution sum, both basis functions are multiplied by the same
coefficient. The sum of such a symmetric couple of basis functions
is effectively treated as a single basis function.

All the cases considered in the present paper exhibit the
reflection symmetry. The coordinate system is always positioned
so that the axis of symmetry lies at x=0. When a basis function is
centred on (x;y;) its mirror image is centred on (—x;Yy;). The

calculations are performed only for x >0, on the x <0 half-plane
no boundary points have to be prescribed.

3.4. Treatment of moving boundary

To calculate the displacement of the moving boundary, the
head gradient is needed according to Eq. (10). The equation for
the head gradient has the same form as the equation given by the
Neumann boundary condition. In the case of MFS, its y compo-
nent is

oh N oG;
oy = ; 2y P 1)
and in the case of BDS
oh N
oy @)= ; Fyci. 22
Here,
e .

Fyj= a—y’(pj), i#] (23)
and

1
Fﬁ=—EZFUc}-. (24)

=1
J#i

The boundary points are moved together with the boundary,
as follows from Eq. (10) and the backward Euler formula

oh
Ve =y % (PpAEL. (25)

yje¥ represents the coordinate of the boundary point in the next
timestep. The derivative oh/dy(p;) is calculated by Eq. (21) or
Eq. (22). In MFS, the artificial boundary and the singularities are
moved by the same amount, while in BDS the basis functions
remain centred on the moved boundary points.

3.5. Overview of the solution procedure

The flowchart of the solution procedure is presented schema-
tically in Fig. 4. The geometry and the boundary conditions are
defined and discretised. They are represented by the coordinates
of the boundary points and the boundary conditions for all the
boundary points. Furthermore, the coordinates of the singularities
of the basis functions in the case of MFS or the radii of the
desingularisation circles in the case of BDS are chosen.

The Laplace equation (4) is solved next, using MFS or BDS.
From the solution of the Laplace equation, the head derivative
oh/oy at the liquid surface is determined according to Eq. (21) in
the case of MFS or Eq. (22) in the case of BDS. The displacement of
the surface in a timestep At is calculated according to Eq. (25).
The new shape of the liquid surface (and in the case of MFS of the
artificial boundary) is determined. In particular, the new positions
of the boundary points, the new boundary conditions at the
boundary points and in the case of MFS the new positions of
the singularities at the end of the timestep are calculated. They
are used as discretised geometry and boundary conditions for the
next timestep. At the same time, the total amount of liquid that
enters the matrix is calculated from the displacement of the
boundary points.

4. Numerical examples

To test the methods, two cases for which analytical results
exist were selected. In Case 1, a steady state inflow into an
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Fig. 4. Flowchart of the solution procedure.

underground tunnel is calculated. In Case 2, a simple one-
dimensional problem of matrix-infilling due to a pressure change
at lower boundary is calculated. The numerical results for both
cases are compared with the analytical results. In Case 3, transient
exchange between the conduit and the matrix in a 2D domain is
calculated using MFS and BDS. Since this case is a main motiva-
tion for the study, several examples with different parameters are
calculated.

The numerical procedures are written in the C++ language and
compiled with the g++ 4.5.2 compiler. The matrix equations are
solved using the LU method implemented in the Meschach++
library by Stephen Roberts. The OS used is Ubuntu 11.04 with
Linux kernel 2.6.38-11-generic, 2.0 GiB of RAM and Intel® Core™
2 Duo CPU E8400 with 3.00 GHz clock cycle. A calculation of a
typical MFS example with N=200 and 1500 steps takes approxi-
mately 10 s of CPU time.

4.1. Case 1: steady state inflow into a tunnel
Steady state inflow into an underground tunnel is investigated.

The geometry of the problem and some parameters are presented
in Fig. 5. R is the radius of the tunnel, H is the distance between its

Fig. 5. Case 1: Scheme of the numerical approach for BDS. Empty circles are points
with the specified boundary condition, dark grey circles are the distributed
sources, and the dot-dashed line is the symmetry axis.

centre and the water level surface. The water surface is flat and
horizontal. The density of the boundary points and, in the case of
MEFS, of the singularities of the basis functions, is constant along
all the straight boundaries. Ax is the distance between the
boundary points. The distance between the geometrical and the
artificial boundary in the case of MFS is expressed as sAx (Fig. 2).
X is the distance between the symmetry axis and the outer edge
of the domain, and Y is the distance between the water level and
the lower edge.

The first boundary point at the bottom is on the symmetry axis
x=0, then a new point follows every Ax in the +x direction until
x <X. The boundary condition on all these points is no flow,
Neumann type, 6h/oy = 0. For every boundary point there is a
singularity in MFS that is at the same x and —sAx away from it in y
direction.

There is no boundary point at the outside lower corner, the
points along x < X start one Ax above the bottom, the next one is
one Ax in the +y direction until the water surface is reached. The
boundary condition is again no flow, 6h/ox = 0. For every bound-
ary point there is a singularity in the MFS that is at the same y and
sAx away from the boundary point in the +x direction.

On the water surface, the points start at x=X and follow until
x=0 at the distance Ax. The boundary condition is of Dirichlet
type, h=y. For every boundary point there is a singularity in the
MEFS that is at the same x and sAx away from the boundary point
in the +y direction.

The points on the conduit wall are distributed uniformly along
a semicircle of radius R, the first and the last ones are at both
cross-sections with x=0. The singularities in the MFS are dis-
tributed in the same way on a semicircle around the same centre,
only with radius R/2. The boundary condition is of Dirichlet type,
h=y.

The analytical solution for the case is obtained by standard
methods and is given in classical textbooks [5,35] on groundwater
hydrology. The inflow per unit length of tunnel is

_ 27KH
~ log(2H/R)’

7

q (26)

where K is the hydraulic conductivity, R is the radius of the
tunnel, and H is the depth of the centre of the tunnel below the
steady water table [35]. Expressed with dimensionless variables,
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the inflow is

) oV
q = 72101<07, 27)

where the numerical factor 2 comes from bilateral symmetry
(there is another half of space in addition to the modelled half).
Both equations together give

v mH/l

ot ~ log2H/R) 28

Both MFS and BDS are applied to test the agreement with the
analytical solution. The left hand side of Eq. (28) is calculated
numerically and is found to be equal to 5.888 using MFS and to
6.165 using BDS. The parameters of the calculation used are
X=100,Y=97,R=1,H=4, N=181, Ax=2, in MFS s=5, in BDS
ro = Ax/4. There are 32 points in the conduit. The parameters on
the right hand side in this geometry are H/lp =4 and R/l =1 so
the right hand side evaluates to 6.043. The agreement of our
result with the textbook solution is thus very good.

4.2. Case 2: 1D time-dependent case

A 1D time-dependent case with a fixed head boundary condi-
tion on the lower end, a free surface boundary condition on the
upper end, and gravity pointing downwards is investigated
(Fig. 6). In 1D Darcy flow in a homogeneous medium, the gradient
of h is independent of y. If the boundary condition at the lower
boundary y=0 is h=H, its relation to water depth P is

dh  H-P

PR (29)
By Darcy’s law,

dP dh

at = dy (30)

By eliminating the gradient of h from the equations, and integrat-
ing, we get

t = Po—P—H[In(H—P)—In(H—Py)], 31)

where Py = P(t =0).

The case is solved numerically using BDS. The discretised
geometry, presented in Fig. 7, is similar to Case 1, only without
a conduit, and the node at x=X on the water surface is left out.

The boundary conditions at the bottom boundary points are of
Dirichlet type, h=H. For the outward boundary, the boundary

H

Fig. 6. Case 2: The geometry of the 1D time-dependent test case.
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Fig. 7. Case 2: Scheme of the numerical approach for BDS. Empty circles are points
with the specified boundary condition, dark grey circles are the distributed
sources, and the dot-dashed line is the symmetry axis. Note that some of the
nodes at x=X are initially located above the water table.

condition is no flow, the same as in Case 1. The upper boundary is
a free surface. The boundary condition for the Laplace equation is
of Dirichlet type, h=y, where y is the vertical coordinate of the
boundary point at a particular instant.

The parameters used are X=101, Y=10, Ax=1,At=0.1, ro=
Ax/4, the calculation is run until t=100. The bottom boundary is
located at y=0, the boundary condition is Dirichlet with h=20. The
outward boundary extends from y=0 to y=20. That is, the boundary
points are positioned at every Ax in the y direction until y=20, even
if they are above the initial water table. The y coordinate of the
central point is used as P in Eq. (31) with Py = 10 and H=20 and t(P)
is calculated. The difference between the numerically obtained ¢ and
t(P) from Eq. (31) is shown in Fig. 8. The methods are compared in
this way because Eq. (31) offers an explicit form for t(P) and not for
P(t). The duration of the calculation is sufficient to approach
equilibrium, the change of P during the calculation is 99.6% of the
way toward P=H. It can be seen that the agreement is good.

4.3. Case 3: conduit-matrix exchange

The geometry of the problem and some parameters are
depicted in Fig. 9. R is the radius of the conduit, H is the distance
between the centre of the conduit and the water level surface at
the beginning. Initially, the water surface is flat and horizontal.
The density of the boundary points and, in the case of MFS, of the
singularities of the basis functions, is constant along all the
straight boundaries. Ax is the distance between the boundary
points. The distance between the geometrical and the artificial
boundary is fixed during time. The ratio between this distance
and Ax is labelled s. X is the distance between the symmetry axis
and the outer edge of the domain, and Y is the distance between
the initial water level and the lower edge.

Discretisation is exactly the same as in Case 1. The boundary
conditions at the bottom and at the outer edge are also the same
as in Case 1. At the water surface, the free surface boundary
condition is used. The boundary condition for the Laplace equa-
tion is of Dirichlet type, h=y, where y is the vertical coordinate of
the boundary point at the particular instant. In MFS, the
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Fig. 8. Case 2: Difference between t of the BDS calculation and t(P) calculated from

the BDS result for P using Eq. (31). The difference stays below 1% of t in the whole
calculation.
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Fig. 9. Case 3: Scheme of the numerical approach for MFS. Circles are points with
the specified boundary condition, crosses are poles of basis functions lying on the
artificial boundary, and the dot-dashed line is the symmetry axis.

singularities above the free surface keep constant x and move in y
direction to keep the distance from their boundary points equal to
sAx. The boundary condition at the conduit wall is of Dirichlet
type, h=H+Ah.

An example of the MFS solution of the Laplace equation
is presented in Fig. 10. The parameters of this example
are X=100,Y=97,R=1,H=4, Ah=2,t=150, N=181, Ax=2,
s= 5, At= 0.1. As already defined, t is dimensionless time, At is
the dimensionless timestep, and N is the number of all basis

T T T T T 20
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XHXXXXHA XX x
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h=-1,75
L ; — -100
[ B O I 120
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Fig. 10. Case 3: Potential h at t=150, calculated using MFS. The other parameters
are X=100,Y=97,R=1H=4,Ah=2N=181,Ax=2,s=5,At=0.1. The lines
represent constant h and are spaced 0.05 apart. The boundary points are denoted
by circles and the crosses mark the poles of the fundamental solutions.
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Fig. 11. Case 3: Potential h at t=150, calculated using BDS. The other parameters
are X=100,Y=97,R=1,H=4, Ah=2,N=181, Ax=2, At=0.1, 1o = Ax/4. The
lines represent constant h and are spaced 0.05 apart. The boundary points are
denoted by circles.

functions. Note that, due to the nature of the Laplace equation,
there is no initial condition, its role is taken by the initial
geometry and boundary conditions. The example is calculated
with 32 boundary points in the conduit so that s in the conduit is
approximately the same as along the straight edges. This example
is taken as the MFS standard example. The resulting hydraulic
head is quite uniform around the boundaries far from the conduit,
while near the conduit it rises to the prescribed h=—1.

An example calculated using BDS with ro = Ax/4 and with all
the parameters the same as for Fig. 10 is presented in Fig. 11. This
is taken as the BDS standard example. As the gradient of h is low
in some areas, comparison of equipotential lines is a sensitive
method for checking the similarity of potentials calculated with
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different methods. It can be seen that some equipotential lines are
noticeably different even if the potentials are quite similar.

Fig. 12 represents temporal evolution of the water table. Note
that the graph is cropped in the Y direction so that only the
interesting part is seen. All the parameters except for t are the
same as in the standard example (see Fig. 10).

The area between the original water table and the water table
at time ¢ was calculated and labelled V. It represents the volume
of water that left the conduit under the assumptions of Darcy
flow. The result for V(t) for the standard example is presented in
Fig. 13. Note that in the limit t — oo, the volume approaches AhX,
as expected.

4.3.1. Sensitivity analysis

The behaviour of the MFS and BDS in calculating Case 3 is
investigated. MFS is checked first, as it is the more established of
the two methods. BDS results are then compared to MFS results.
A thorough sensitivity study of BDS is performed afterwards.

The correct result depends only on the physical parameters
(X,Y,R,H,Ah) so the numerical result should not strongly depend
on the chosen internal parameters of the MFS (N,Ax,s,At). In
Fig. 14, the results for different values of s near s=5 are presented.
It can be seen that the influence of s is small in the range
considered.

The distribution and the number of boundary points is also
varied. The result for the standard example, X =100, Y =97,
R=1,H=4,Ah=2,t=150,N=181,Ax=2,5s=5, At=0.1,is V=
123.253. If the number of points in the conduit is reduced to 3 so
that Ax in the conduit is comparable to Ax at the straight edges,
the result is very similar, V=123.013. Here, N=152, while the
other parameters remain the same. On the other hand, if the
conduit is left with 32 points and Ax is enlarged to 4, then N=107
and V=123.173.

If the timestep is enlarged to At =1 and the other parameters
are left the same as in the standard example, the result is
V=123.497.

0
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Fig. 12. Case 3: The shape of Q at different t calculated using MFS. Q is delimited
by boundary points. The singularities are outside © and fall outside the graph
except in the conduit along the left edge (the circular conduit is not circular in the
figure due to different x and y scaling). The parameters are X =100, Y =97, R=1,
H=4,Ah=2,N=181,Ax=2,5=5, At=0.1.

200 : :

150 -

50

0 | | |
0 500 1000 1500 2000

t

Fig. 13. Case 3: Volume as a function of time, calculated until equilibrium,
using BDS. The parameters are X=100,Y=97,R=1,H=4, Ah=2,N=181,
Ax=2,At=0.1, 19 =Ax/4.
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Fig. 14. Case 3: Volume as a function of time, calculated for different s in MFS.
The other parameters are X =100,Y=97,R=1,H=4, Ah=2,t=150, N=181,
Ax=2, At=0.1 as in the standard example.

In Fig. 15, the standard example is calculated by both MFS and
BDS. In Fig. 16, the same is done for twice as high of a density of
points along the straight edges. The agreement between MFS and
BDS is better in the later case.

Sensitivity of BDS with respect to timestep At, source radius ro,
and the distance between the boundary points Ax is analysed. The
results for sensitivity regarding At are presented in Fig. 17.
Calculated V at t=150 is more or less independent of the choice
of At until above a critical value of At when it no longer converges
to the correct value.
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Fig. 15. Case 3: Volume as a function of time, comparison between MFS and BDS.
The parameters are X=100,Y=97,R=1,H=4, Ah=2,t=150, N=181, Ax=2,
s=5,19=Ax/4, At=0.1.
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Fig. 16. Case 3: Volume as a function of time, comparison between MFS and BDS.
The density of the boundary points is larger than in Fig. 15, the para-
meters are X=100,Y=97,R=1,H=4,Ah=2,t=150,N=329, Ax=1,5=5,
ro=Ax/4, At=0.1.

The sensitivity to ro/Ax is presented in Fig. 18. The sensitivity
to Ax is shown in Fig. 19. For the cases with Ax > 2, the number of
boundary points in the conduit is 3 as the circular conduit shape
cannot be resolved well enough with too few points. For smaller
Ax, the number of nodes in the conduit is increased so that the
distance between them is similar to Ax. In the conduit, there are
5 nodes for Ax=1, 8 nodes for Ax=0.5, and 14 nodes for
Ax=0.25. The analysis for Ax> 8, where the calculated V is

140 B

80 —

40 |- B

20 - B

At

Fig. 17. Case 3: Influence of the timestep on the BDS method. The other para-
meters are X=100,Y=97,R=1,H=4,Ah=2,t=150,N=181,Ax=2,19=
Ax/4. It can be seen that the results are fairly consistent up to At=1.875 while
at At =2 the result is obviously incorrect. The full diamond corresponds to the
standard example.
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Fig. 18. Case 3: Influence of the source radius r, on the BDS method. The
other parameters are X =100, Y =97, R=1,H=4, Ah=2,t =150, N=181, Ax =2,
At = 0.1. When r, changes for a factor of 700, the change in the result is a few percent.
The full diamond corresponds to the standard example.

expected to be very different, was not performed. In these cases,
the distance between the conduit and the liquid surface would
fall below 1/3 of the distance between the nodes, while the nodes
in the conduit part would be less than Ax/5 apart.

We see that the results, when solving the Laplace equation by
MFS, do not depend strongly on s, Ax or At. The results obtained
by BDS in place of MFS are also not significantly different. At the
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Fig. 19. Case 3: Influence of the boundary point spacing Ax on the BDS method.
The other parameters are X=100,Y =97, R=1, H=4, Ah =2, t =150, ro = Ax/4,
At = 0.1. The number of boundary points varies from N=41 for Ax =8 to N=1202

for Ax =0.25. The result is changing slowly as a function of Ax and is steady for
Ax—0. The full diamond corresponds to Ax of the standard example.

same time, the BDS is not sensitive to At, ro or Ax in the range
considered.

4.4. Discussion

The BDS [16] is applied in the present paper to solve moving/
free boundary problems associated with the transport of water
from the conduit to the porous matrix. The method essentially
gives the same results as the classical MFS. It has the advantage
that the artificial boundary is not present. This advantage is
particularly welcome in the treated unfixed boundary problems,
since the artificial boundary does not need to be recalculated
along with the physical boundary, as in the classical MFS. In BDS,
only the points on the unfixed physical boundary are moved.

MFS and BDS are used to calculate water exchange between a
conduit and the surrounding matrix, which is a situation impor-
tant in karst hydrogeology.

We consider a water filled conduit that is initially in equili-
brium with the surrounding matrix. A step change in hydraulic
head is applied and time-dependent exchange flow is calculated.
The results obtained by MFS and BDS are compared to each other.
Sensitivity analyses of the influence of the density of points, the
distance between the real and the artificial boundary in MFS, the
source radii in BDS, and the timestep are done. MFS is bench-
marked against a textbook solution, and BDS against a time-
dependent example with an analytical solution. The textbook
solution is for steady state inflow into an underground tunnel.
The only difference between our conduit and the tunnel is the
boundary condition on the tunnel wall, where seepage face h=y
is used. The time-dependent analytical example is 1D, oriented
along gravity with a fixed head boundary condition on the lower
end and a free surface on the upper end. It is compared to a
modelled 2D rectangle with a fixed head boundary condition at
the lower and a free surface at the upper face, a no flow boundary

condition at the sideways face, and a symmetry axis just like the
conduit-matrix exchange examples. The agreement with the
benchmarks and between different runs is excellent in all cases.

5. Conclusion

Both the MFS and BDS are found to be efficient and reliable
when applied to computation of moving boundary/free surface
Darcy flow problems. Water exchange between a conduit and the
surrounding matrix is dealt with successfully. The BDS method is
applied to free and moving boundary problems for the first time
and compared with MFS and analytical solutions for this type of
problem. A new boundary meshless numerical method is applied
to geohydrological problems and found to be suitable for the
purpose.

It should be noted that in the BDS the governing equation
is not satisfied in the parts of the domain overlapping with the
circles [16]. The method can potentially be applied to multiply-
connected-domain problems [36] while it is not certain if any
modifications would be needed [16]. However, the problem tackled
here is essentially simply-connected due to the consideration of
the symmetry.

The BDS method presented in this paper is very general and it
can be adapted or extended to handle many related problems,
discussed in the present paper.
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